Robust and Adaptive Model Predictive Control of Nonlinear Systems

Robust and Adaptive Model Predictive Control of Nonlinear Systems PDF Author: Martin Guay
Publisher: IET
ISBN: 1849195528
Category : Technology & Engineering
Languages : en
Pages : 269

Get Book Here

Book Description
This book offers a novel approach to adaptive control and provides a sound theoretical background to designing robust adaptive control systems with guaranteed transient performance. It focuses on the more typical role of adaptation as a means of coping with uncertainties in the system model.

Robust and Adaptive Model Predictive Control of Nonlinear Systems

Robust and Adaptive Model Predictive Control of Nonlinear Systems PDF Author: Martin Guay
Publisher: IET
ISBN: 1849195528
Category : Technology & Engineering
Languages : en
Pages : 269

Get Book Here

Book Description
This book offers a novel approach to adaptive control and provides a sound theoretical background to designing robust adaptive control systems with guaranteed transient performance. It focuses on the more typical role of adaptation as a means of coping with uncertainties in the system model.

Robust Adaptive Model Predictive Control of Nonlinear Systems

Robust Adaptive Model Predictive Control of Nonlinear Systems PDF Author: Darryl DeHaan
Publisher:
ISBN:
Category : Technology
Languages : en
Pages :

Get Book Here

Book Description
Robust Adaptive Model Predictive Control of Nonlinear Systems.

Robust and Adaptive Model Predictive Control of Non-linear Systems

Robust and Adaptive Model Predictive Control of Non-linear Systems PDF Author: Martin Guay
Publisher:
ISBN: 9781523101047
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 252

Get Book Here

Book Description
The following topics are dealt with: adaptive control; constrained nonlinear systems; disturbance attenuation; robust adaptive economic MPC; and discrete-time systems.

Robust Adaptive Control

Robust Adaptive Control PDF Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850

Get Book Here

Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Explicit Nonlinear Model Predictive Control

Explicit Nonlinear Model Predictive Control PDF Author: Alexandra Grancharova
Publisher: Springer
ISBN: 3642287808
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.

Model Predictive Control in the Process Industry

Model Predictive Control in the Process Industry PDF Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
ISBN: 1447130081
Category : Technology & Engineering
Languages : en
Pages : 250

Get Book Here

Book Description
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Advances in Aerospace Guidance, Navigation and Control

Advances in Aerospace Guidance, Navigation and Control PDF Author: Qiping Chu
Publisher: Springer Science & Business Media
ISBN: 3642382533
Category : Technology & Engineering
Languages : en
Pages : 773

Get Book Here

Book Description
Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.

Model Predictive Control

Model Predictive Control PDF Author: Basil Kouvaritakis
Publisher: Springer
ISBN: 3319248537
Category : Technology & Engineering
Languages : en
Pages : 387

Get Book Here

Book Description
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.

Handbook of Model Predictive Control

Handbook of Model Predictive Control PDF Author: Saša V. Raković
Publisher: Springer
ISBN: 3319774891
Category : Science
Languages : en
Pages : 693

Get Book Here

Book Description
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.

Minimax Approaches to Robust Model Predictive Control

Minimax Approaches to Robust Model Predictive Control PDF Author: Johan Löfberg
Publisher: Linköping University Electronic Press
ISBN: 9173736228
Category : Predictive control
Languages : en
Pages : 212

Get Book Here

Book Description
Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for uncertain constrained linear discrete-time systems. A minimax strategy in MPC means that worst-case performance with respect to uncertainties is optimized. Unfortunately, many minimax MPC formulations yield intractable optimization problems with exponential complexity. Minimax algorithms for a number of uncertainty models are derived in the thesis. These include systems with bounded external additive disturbances, systems with uncertain gain, and systems described with linear fractional transformations. The central theme in the different algorithms is semidefinite relaxations. This means that the minimax problems are written as uncertain semidefinite programs, and then conservatively approximated using robust optimization theory. The result is an optimization problem with polynomial complexity. The use of semidefinite relaxations enables a framework that allows extensions of the basic algorithms, such as joint minimax control and estimation, and approx- imation of closed-loop minimax MPC using a convex programming framework. Additional topics include development of an efficient optimization algorithm to solve the resulting semidefinite programs and connections between deterministic minimax MPC and stochastic risk-sensitive control. The remaining part of the thesis is devoted to stability issues in MPC for continuous-time nonlinear unconstrained systems. While stability of MPC for un-constrained linear systems essentially is solved with the linear quadratic controller, no such simple solution exists in the nonlinear case. It is shown how tools from modern nonlinear control theory can be used to synthesize finite horizon MPC controllers with guaranteed stability, and more importantly, how some of the tech- nical assumptions in the literature can be dispensed with by using a slightly more complex controller.