Author: Yunong Zhang
Publisher: John Wiley & Sons
ISBN: 1119381231
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.
Robot Manipulator Redundancy Resolution
Author: Yunong Zhang
Publisher: John Wiley & Sons
ISBN: 1119381231
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.
Publisher: John Wiley & Sons
ISBN: 1119381231
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.
Control of Redundant Robot Manipulators
Author: Rajni V. Patel
Publisher: Springer Science & Business Media
ISBN: 9783540250715
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This monograph provides a comprehensive and thorough treatment of the problem of controlling a redundant robot manipulator. It presents the latest research from the field with a good balance between theory and practice. All theoretical developments are verified both via simulation and experimental work on an actual prototype redundant robot manipulator. This book is the first text aimed at graduate students and researchers working in the area of redundant manipulators giving a comprehensive coverage of control of redundant robot manipulators from the viewpoint of theory and experimentation.
Publisher: Springer Science & Business Media
ISBN: 9783540250715
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This monograph provides a comprehensive and thorough treatment of the problem of controlling a redundant robot manipulator. It presents the latest research from the field with a good balance between theory and practice. All theoretical developments are verified both via simulation and experimental work on an actual prototype redundant robot manipulator. This book is the first text aimed at graduate students and researchers working in the area of redundant manipulators giving a comprehensive coverage of control of redundant robot manipulators from the viewpoint of theory and experimentation.
Repetitive Motion Planning and Control of Redundant Robot Manipulators
Author: Yunong Zhang
Publisher: Springer Science & Business Media
ISBN: 3642375189
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.
Publisher: Springer Science & Business Media
ISBN: 3642375189
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.
Parallel Robots
Author: Hamid D. Taghirad
Publisher: CRC Press
ISBN: 1466599286
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Parallel structures are more effective than serial ones for industrial automation applications that require high precision and stiffness, or a high load capacity relative to robot weight. Although many industrial applications have adopted parallel structures for their design, few textbooks introduce the analysis of such robots in terms of dynamics
Publisher: CRC Press
ISBN: 1466599286
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Parallel structures are more effective than serial ones for industrial automation applications that require high precision and stiffness, or a high load capacity relative to robot weight. Although many industrial applications have adopted parallel structures for their design, few textbooks introduce the analysis of such robots in terms of dynamics
Robot Force Control
Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1461544319
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
Publisher: Springer Science & Business Media
ISBN: 1461544319
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
Kinematic Control of Redundant Robot Arms Using Neural Networks
Author: Shuai Li
Publisher: John Wiley & Sons
ISBN: 1119556961
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
Presents pioneering and comprehensive work on engaging movement in robotic arms, with a specific focus on neural networks This book presents and investigates different methods and schemes for the control of robotic arms whilst exploring the field from all angles. On a more specific level, it deals with the dynamic-neural-network based kinematic control of redundant robot arms by using theoretical tools and simulations. Kinematic Control of Redundant Robot Arms Using Neural Networks is divided into three parts: Neural Networks for Serial Robot Arm Control; Neural Networks for Parallel Robot Control; and Neural Networks for Cooperative Control. The book starts by covering zeroing neural networks for control, and follows up with chapters on adaptive dynamic programming neural networks for control; projection neural networks for robot arm control; and neural learning and control co-design for robot arm control. Next, it looks at robust neural controller design for robot arm control and teaches readers how to use neural networks to avoid robot singularity. It then instructs on neural network based Stewart platform control and neural network based learning and control co-design for Stewart platform control. The book finishes with a section on zeroing neural networks for robot arm motion generation. Provides comprehensive understanding on robot arm control aided with neural networks Presents neural network-based control techniques for single robot arms, parallel robot arms (Stewart platforms), and cooperative robot arms Provides a comparison of, and the advantages of, using neural networks for control purposes rather than traditional control based methods Includes simulation and modelling tasks (e.g., MATLAB) for onward application for research and engineering development By focusing on robot arm control aided by neural networks whilst examining central topics surrounding the field, Kinematic Control of Redundant Robot Arms Using Neural Networks is an excellent book for graduate students and academic and industrial researchers studying neural dynamics, neural networks, analog and digital circuits, mechatronics, and mechanical engineering.
Publisher: John Wiley & Sons
ISBN: 1119556961
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
Presents pioneering and comprehensive work on engaging movement in robotic arms, with a specific focus on neural networks This book presents and investigates different methods and schemes for the control of robotic arms whilst exploring the field from all angles. On a more specific level, it deals with the dynamic-neural-network based kinematic control of redundant robot arms by using theoretical tools and simulations. Kinematic Control of Redundant Robot Arms Using Neural Networks is divided into three parts: Neural Networks for Serial Robot Arm Control; Neural Networks for Parallel Robot Control; and Neural Networks for Cooperative Control. The book starts by covering zeroing neural networks for control, and follows up with chapters on adaptive dynamic programming neural networks for control; projection neural networks for robot arm control; and neural learning and control co-design for robot arm control. Next, it looks at robust neural controller design for robot arm control and teaches readers how to use neural networks to avoid robot singularity. It then instructs on neural network based Stewart platform control and neural network based learning and control co-design for Stewart platform control. The book finishes with a section on zeroing neural networks for robot arm motion generation. Provides comprehensive understanding on robot arm control aided with neural networks Presents neural network-based control techniques for single robot arms, parallel robot arms (Stewart platforms), and cooperative robot arms Provides a comparison of, and the advantages of, using neural networks for control purposes rather than traditional control based methods Includes simulation and modelling tasks (e.g., MATLAB) for onward application for research and engineering development By focusing on robot arm control aided by neural networks whilst examining central topics surrounding the field, Kinematic Control of Redundant Robot Arms Using Neural Networks is an excellent book for graduate students and academic and industrial researchers studying neural dynamics, neural networks, analog and digital circuits, mechatronics, and mechanical engineering.
Modern Robotics
Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545
Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545
Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Vehicle-Manipulator Systems
Author: Pål Johan From
Publisher: Springer Science & Business Media
ISBN: 1447154630
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas. The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain globally valid representations of the dynamic equations of vehicle-manipulator systems. The specific characteristics of several different types of vehicle-manipulator systems are included and the various application areas of these systems are discussed in detail. For underwater robots buoyancy and gravity, drag forces, added mass properties, and ocean currents are considered. For space robotics the effects of free fall environments and the strong dynamic coupling between the spacecraft and the manipulator are discussed. For wheeled robots wheel kinematics and non-holonomic motion is treated, and finally the inertial forces are included for robots mounted on a forced moving base. Modeling and Control of Vehicle-manipulator Systems will be of interest to researchers and engineers studying and working on many applications of robotics: underwater, space, personal assistance, and mobile manipulation in general, all of which have similarities in the equations required for modeling and control.
Publisher: Springer Science & Business Media
ISBN: 1447154630
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas. The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain globally valid representations of the dynamic equations of vehicle-manipulator systems. The specific characteristics of several different types of vehicle-manipulator systems are included and the various application areas of these systems are discussed in detail. For underwater robots buoyancy and gravity, drag forces, added mass properties, and ocean currents are considered. For space robotics the effects of free fall environments and the strong dynamic coupling between the spacecraft and the manipulator are discussed. For wheeled robots wheel kinematics and non-holonomic motion is treated, and finally the inertial forces are included for robots mounted on a forced moving base. Modeling and Control of Vehicle-manipulator Systems will be of interest to researchers and engineers studying and working on many applications of robotics: underwater, space, personal assistance, and mobile manipulation in general, all of which have similarities in the equations required for modeling and control.
Robotics
Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1846286417
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.
Publisher: Springer Science & Business Media
ISBN: 1846286417
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.
Robot Grippers
Author: Gareth J. Monkman
Publisher: John Wiley & Sons
ISBN: 352760989X
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
Since robotic prehension is widely used in all sectors of manufacturing industry, this book fills the need for a comprehensive, up-to-date treatment of the topic. As such, this is the first text to address both developers and users, dealing as it does with the function, design and use of industrial robot grippers. The book includes both traditional methods and many more recent developments such as micro grippers for the optolectronics industry. Written by authors from academia, industry and consulting, it begins by covering the four basic categories of robotic prehension before expanding into sections dealing with endeffector design and control, robotic manipulation and kinematics. Later chapters go on to describe how these various gripping techniques can be used for a common industrial aim, with details of related topics such as: kinematics, part separation, sensors, tool excahnge and compliance. The whole is rounded off with specific examples and case studies. With more than 570 figures, this practical book is all set to become the standard for advanced students, researchers and manufacturing engineers, as well as designers and project managers seeking practical descriptions of robot endeffectors and their applications.
Publisher: John Wiley & Sons
ISBN: 352760989X
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
Since robotic prehension is widely used in all sectors of manufacturing industry, this book fills the need for a comprehensive, up-to-date treatment of the topic. As such, this is the first text to address both developers and users, dealing as it does with the function, design and use of industrial robot grippers. The book includes both traditional methods and many more recent developments such as micro grippers for the optolectronics industry. Written by authors from academia, industry and consulting, it begins by covering the four basic categories of robotic prehension before expanding into sections dealing with endeffector design and control, robotic manipulation and kinematics. Later chapters go on to describe how these various gripping techniques can be used for a common industrial aim, with details of related topics such as: kinematics, part separation, sensors, tool excahnge and compliance. The whole is rounded off with specific examples and case studies. With more than 570 figures, this practical book is all set to become the standard for advanced students, researchers and manufacturing engineers, as well as designers and project managers seeking practical descriptions of robot endeffectors and their applications.