Robot Learning

Robot Learning PDF Author: J. H. Connell
Publisher: Springer Science & Business Media
ISBN: 1461531845
Category : Technology & Engineering
Languages : en
Pages : 247

Get Book Here

Book Description
Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.

Robot Learning

Robot Learning PDF Author: J. H. Connell
Publisher: Springer Science & Business Media
ISBN: 1461531845
Category : Technology & Engineering
Languages : en
Pages : 247

Get Book Here

Book Description
Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.

Robot Learning Human Skills and Intelligent Control Design

Robot Learning Human Skills and Intelligent Control Design PDF Author: CHENGUANG. YANG
Publisher: CRC Press
ISBN: 9780367634377
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book focusses on robotic skill learning and intelligent control for robotic manipulators including enabling of robots to efficiently learn motor and stiffness/force regulation policies from humans. It explains transfer of human limb impedance control strategies to the robots so that the adaptive impedance control for the robot can be realized.

Recent Advances in Robot Learning

Recent Advances in Robot Learning PDF Author: Judy A. Franklin
Publisher: Springer Science & Business Media
ISBN: 9780792397458
Category : Computers
Languages : en
Pages : 226

Get Book Here

Book Description
Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).

Robot-Proof, revised and updated edition

Robot-Proof, revised and updated edition PDF Author: Joseph E. Aoun
Publisher: MIT Press
ISBN: 0262549859
Category : Education
Languages : en
Pages : 221

Get Book Here

Book Description
A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.

Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control PDF Author: Aude Billard
Publisher: MIT Press
ISBN: 0262367017
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book Here

Book Description
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.

Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition PDF Author: Alexandros Iosifidis
Publisher: Academic Press
ISBN: 0323885721
Category : Technology & Engineering
Languages : en
Pages : 638

Get Book Here

Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Robot Learning

Robot Learning PDF Author: Suraiya Jabin
Publisher: BoD – Books on Demand
ISBN: 9533071044
Category : Computers
Languages : en
Pages : 162

Get Book Here

Book Description
Robot Learning is intended for one term advanced Machine Learning courses taken by students from different computer science research disciplines. This text has all the features of a renowned best selling text. It gives a focused introduction to the primary themes in a Robot learning course and demonstrates the relevance and practicality of various Machine Learning algorithms to a wide variety of real-world applications from evolutionary techniques to reinforcement learning, classification, control, uncertainty and many other important fields. Salient features: - Comprehensive coverage of Evolutionary Techniques, Reinforcement Learning and Uncertainty. - Precise mathematical language used without excessive formalism and abstraction. - Included applications demonstrate the utility of the subject in terms of real-world problems. - A separate chapter on Anticipatory-mechanisms-of-human-sensory-motor-coordination and biped locomotion. - Collection of most recent research on Robot Learning.

Learn Robotics with Raspberry Pi

Learn Robotics with Raspberry Pi PDF Author: Matt Timmons-Brown
Publisher: No Starch Press
ISBN: 1593279213
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
In Learn Robotics with Raspberry Pi, you'll learn how to build and code your own robot projects with just the Raspberry Pi microcomputer and a few easy-to-get components - no prior experience necessary! Learn Robotics with Raspberry Pi will take you from inexperienced maker to robot builder. You'll start off building a two-wheeled robot powered by a Raspberry Pi minicomputer and then program it using Python, the world's most popular programming language. Gradually, you'll improve your robot by adding increasingly advanced functionality until it can follow lines, avoid obstacles, and even recognize objects of a certain size and color using computer vision. Learn how to: - Control your robot remotely using only a Wii remote - Teach your robot to use sensors to avoid obstacles - Program your robot to follow a line autonomously - Customize your robot with LEDs and speakers to make it light up and play sounds - See what your robot sees with a Pi Camera As you work through the book, you'll learn fundamental electronics skills like how to wire up parts, use resistors and regulators, and determine how much power your robot needs. By the end, you'll have learned the basics of coding in Python and know enough about working with hardware like LEDs, motors, and sensors to expand your creations beyond simple robots.

Deep Reinforcement Learning

Deep Reinforcement Learning PDF Author: Hao Dong
Publisher: Springer Nature
ISBN: 9811540950
Category : Computers
Languages : en
Pages : 526

Get Book Here

Book Description
Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up numerous new applications in domains such as healthcare, robotics, smart grids and finance. Divided into three main parts, this book provides a comprehensive and self-contained introduction to DRL. The first part introduces the foundations of deep learning, reinforcement learning (RL) and widely used deep RL methods and discusses their implementation. The second part covers selected DRL research topics, which are useful for those wanting to specialize in DRL research. To help readers gain a deep understanding of DRL and quickly apply the techniques in practice, the third part presents mass applications, such as the intelligent transportation system and learning to run, with detailed explanations. The book is intended for computer science students, both undergraduate and postgraduate, who would like to learn DRL from scratch, practice its implementation, and explore the research topics. It also appeals to engineers and practitioners who do not have strong machine learning background, but want to quickly understand how DRL works and use the techniques in their applications.

Advances in Robot Learning

Advances in Robot Learning PDF Author: Jeremy Wyatt
Publisher: Springer
ISBN: 3540400443
Category : Computers
Languages : en
Pages : 173

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-workshop proceedings of the 8th European Workshop on Learning Robots, EWLR'99, held in Lausanne, Switzerland in September 1999.The seven revised full workshop papers presented were carefully reviewed and selected for inclusion in the book. Also included are two invited full papers. Among the topics addressed are map building for robot navigation, multi-task reinforcement learning, neural network approaches, example-based learning, situated agents, planning maps for mobile robots, path finding, autonomous robots, and biologically inspired approaches.