Rings and Factorization

Rings and Factorization PDF Author: David William Sharpe
Publisher: CUP Archive
ISBN: 9780521337182
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This textbook is an introduction to the concept of factorization and its application to problems in algebra and number theory. With the minimum of prerequisites, the reader is introduced to the notion of rings, fields, prime elements and unique factorization. The author shows how concepts can be applied to a variety of examples such as factorizing polynomials, finding determinants of matrices and Fermat's 'two-squares theorem'. Based on an undergraduate course given at the University of Sheffield, Dr Sharpe has included numerous examples which demonstrate how frequently these ideas are useful in concrete, rather than abstract, settings. The book also contains many exercises of varying degrees of difficulty together with hints and solutions. Second and third year undergraduates will find this a readable and enjoyable account of a subject lying at the heart of much of mathematics.

Rings and Factorization

Rings and Factorization PDF Author: David William Sharpe
Publisher: CUP Archive
ISBN: 9780521337182
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This textbook is an introduction to the concept of factorization and its application to problems in algebra and number theory. With the minimum of prerequisites, the reader is introduced to the notion of rings, fields, prime elements and unique factorization. The author shows how concepts can be applied to a variety of examples such as factorizing polynomials, finding determinants of matrices and Fermat's 'two-squares theorem'. Based on an undergraduate course given at the University of Sheffield, Dr Sharpe has included numerous examples which demonstrate how frequently these ideas are useful in concrete, rather than abstract, settings. The book also contains many exercises of varying degrees of difficulty together with hints and solutions. Second and third year undergraduates will find this a readable and enjoyable account of a subject lying at the heart of much of mathematics.

A First Course in Abstract Algebra

A First Course in Abstract Algebra PDF Author: Marlow Anderson
Publisher: CRC Press
ISBN: 1420057111
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there

Groups, Rings, Modules

Groups, Rings, Modules PDF Author: Maurice Auslander
Publisher: Courier Corporation
ISBN: 048679542X
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Classic monograph covers sets and maps, monoids and groups, unique factorization domains, localization and tensor products, applications of fundamental theorem, algebraic field extension, Dedekind domains, and much more. 1974 edition.

Rings, Polynomials, and Modules

Rings, Polynomials, and Modules PDF Author: Marco Fontana
Publisher: Springer
ISBN: 3319658743
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
This volume presents a collection of articles highlighting recent developments in commutative algebra and related non-commutative generalizations. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non-Noetherian ring theory, module theory and integer-valued polynomials along with connections to algebraic number theory, algebraic geometry, topology and homological algebra. Most of the eighteen contributions are authored by attendees of the two conferences in commutative algebra that were held in the summer of 2016: “Recent Advances in Commutative Ring and Module Theory,” Bressanone, Italy; “Conference on Rings and Polynomials” Graz, Austria. There is also a small collection of invited articles authored by experts in the area who could not attend either of the conferences. Following the model of the talks given at these conferences, the volume contains a number of comprehensive survey papers along with related research articles featuring recent results that have not yet been published elsewhere.

Divisor Theory

Divisor Theory PDF Author: Harold M. Edwards
Publisher: Springer Science & Business Media
ISBN: 0817649778
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
Man sollte weniger danach streben, die Grenzen der mathe matischen Wissenschaften zu erweitern, als vielmehr danach, den bereits vorhandenen Stoff aus umfassenderen Gesichts punkten zu betrachten - E. Study Today most mathematicians who know about Kronecker's theory of divisors know about it from having read Hermann Weyl's lectures on algebraic number theory [We], and regard it, as Weyl did, as an alternative to Dedekind's theory of ideals. Weyl's axiomatization of what he calls "Kronecker's" theory is built-as Dedekind's theory was built-around unique factor ization. However, in presenting the theory in this way, Weyl overlooks one of Kronecker's most valuable ideas, namely, the idea that the objective of the theory is to define greatest com mon divisors, not to achieve factorization into primes. The reason Kronecker gave greatest common divisors the primary role is simple: they are independent of the ambient field while factorization into primes is not. The very notion of primality depends on the field under consideration-a prime in one field may factor in a larger field-so if the theory is founded on factorization into primes, extension of the field entails a completely new theory. Greatest common divisors, on the other hand, can be defined in a manner that does not change at all when the field is extended (see {sect}1.16). Only after he has laid the foundation of the theory of divisors does Kronecker consider factorization of divisors into divisors prime in some specified field

Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules PDF Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.

Multiplicative Ideal Theory and Factorization Theory

Multiplicative Ideal Theory and Factorization Theory PDF Author: Scott Chapman
Publisher: Springer
ISBN: 9783319388533
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.

Algebra in Action: A Course in Groups, Rings, and Fields

Algebra in Action: A Course in Groups, Rings, and Fields PDF Author: Shahriar Shahriar
Publisher: American Mathematical Soc.
ISBN: 1470428490
Category : Mathematics
Languages : en
Pages : 698

Get Book Here

Book Description
This text—based on the author's popular courses at Pomona College—provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equations, and, in field theory, Galois theory and the solvability of polynomials take center stage. In each area, the text goes deep enough to demonstrate the power of abstract thinking and to convince the reader that the subject is full of unexpected results.

Foundations of Module and Ring Theory

Foundations of Module and Ring Theory PDF Author: Robert Wisbauer
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.

Factorization

Factorization PDF Author: Steven H. Weintraub
Publisher: CRC Press
ISBN: 1439865663
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
The concept of factorization, familiar in the ordinary system of whole numbers that can be written as a unique product of prime numbers, plays a central role in modern mathematics and its applications. This exposition of the classic theory leads the reader to an understanding of the current knowledge of the subject and its connections to other math