Rigorous Numerics in Dynamics

Rigorous Numerics in Dynamics PDF Author: Jan Bouwe van den Berg
Publisher: American Mathematical Soc.
ISBN: 1470428148
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
This volume is based on lectures delivered at the 2016 AMS Short Course “Rigorous Numerics in Dynamics”, held January 4–5, 2016, in Seattle, Washington. Nonlinear dynamics shapes the world around us, from the harmonious movements of celestial bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell. Mathematically these phenomena are modeled by nonlinear dynamical systems, in the form of ODEs, PDEs and delay equations. The presence of nonlinearities complicates the analysis, and the difficulties are even greater for PDEs and delay equations, which are naturally defined on infinite dimensional function spaces. With the availability of powerful computers and sophisticated software, numerical simulations have quickly become the primary tool to study the models. However, while the pace of progress increases, one may ask: just how reliable are our computations? Even for finite dimensional ODEs, this question naturally arises if the system under study is chaotic, as small differences in initial conditions (such as those due to rounding errors in numerical computations) yield wildly diverging outcomes. These issues have motivated the development of the field of rigorous numerics in dynamics, which draws inspiration from ideas in scientific computing, numerical analysis and approximation theory. The articles included in this volume present novel techniques for the rigorous study of the dynamics of maps via the Conley-index theory; periodic orbits of delay differential equations via continuation methods; invariant manifolds and connecting orbits; the dynamics of models with unknown nonlinearities; and bifurcations diagrams.

Rigorous Numerics in Dynamics

Rigorous Numerics in Dynamics PDF Author: Jan Bouwe van den Berg
Publisher: American Mathematical Soc.
ISBN: 1470428148
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
This volume is based on lectures delivered at the 2016 AMS Short Course “Rigorous Numerics in Dynamics”, held January 4–5, 2016, in Seattle, Washington. Nonlinear dynamics shapes the world around us, from the harmonious movements of celestial bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell. Mathematically these phenomena are modeled by nonlinear dynamical systems, in the form of ODEs, PDEs and delay equations. The presence of nonlinearities complicates the analysis, and the difficulties are even greater for PDEs and delay equations, which are naturally defined on infinite dimensional function spaces. With the availability of powerful computers and sophisticated software, numerical simulations have quickly become the primary tool to study the models. However, while the pace of progress increases, one may ask: just how reliable are our computations? Even for finite dimensional ODEs, this question naturally arises if the system under study is chaotic, as small differences in initial conditions (such as those due to rounding errors in numerical computations) yield wildly diverging outcomes. These issues have motivated the development of the field of rigorous numerics in dynamics, which draws inspiration from ideas in scientific computing, numerical analysis and approximation theory. The articles included in this volume present novel techniques for the rigorous study of the dynamics of maps via the Conley-index theory; periodic orbits of delay differential equations via continuation methods; invariant manifolds and connecting orbits; the dynamics of models with unknown nonlinearities; and bifurcations diagrams.

Numerical Methods in Fluid Dynamics

Numerical Methods in Fluid Dynamics PDF Author: Gary A. Sod
Publisher: Cambridge University Press
ISBN: 9780521259248
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
Here is an introduction to numerical methods for partial differential equations with particular reference to those that are of importance in fluid dynamics. The author gives a thorough and rigorous treatment of the techniques, beginning with the classical methods and leading to a discussion of modern developments. For easier reading and use, many of the purely technical results and theorems are given separately from the main body of the text. The presentation is intended for graduate students in applied mathematics, engineering and physical sciences who have a basic knowledge of partial differential equations.

The Parameterization Method for Invariant Manifolds

The Parameterization Method for Invariant Manifolds PDF Author: Àlex Haro
Publisher: Springer
ISBN: 3319296620
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems PDF Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Advanced Dynamics

Advanced Dynamics PDF Author: Dan B. Marghitu
Publisher: Springer Science & Business Media
ISBN: 1461434750
Category : Technology & Engineering
Languages : en
Pages : 616

Get Book Here

Book Description
Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly,allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support.

Complex Dynamics

Complex Dynamics PDF Author: Robert L. Devaney
Publisher: American Mathematical Soc.
ISBN: 0821836250
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
Chaotic behavior of (even the simplest) iterations of polynomial maps of the complex plane was known for almost one hundred years due to the pioneering work of Farou, Julia, and their contemporaries. However, it was only twenty-five years ago that the first computer generated images illustrating properties of iterations of quadratic maps appeared. These images of the so-called Mandelbrot and Julia sets immediately resulted in a strong resurgence of interest in complex dynamics. The present volume, based on the talks at the conference commemorating the twenty-fifth anniversary of the appearance of Mandelbrot sets, provides a panorama of current research in this truly fascinating area of mathematics.

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations PDF Author: Mitsuhiro T. Nakao
Publisher: Springer Nature
ISBN: 9811376697
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Advances in Applied and Computational Topology

Advances in Applied and Computational Topology PDF Author: American Mathematical Society. Short Course on Computational Topology
Publisher: American Mathematical Soc.
ISBN: 0821853279
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.

Scientific Computing, Validated Numerics, Interval Methods

Scientific Computing, Validated Numerics, Interval Methods PDF Author: Walter Krämer
Publisher: Springer Science & Business Media
ISBN: 1475764847
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Scan 2000, the GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19-22, 2000. The joint conference continued the series of 7 previous Scan-symposia under the joint sponsorship of GAMM and IMACS. These conferences have traditionally covered the numerical and algorithmic aspects of scientific computing, with a strong emphasis on validation and verification of computed results as well as on arithmetic, programming, and algorithmic tools for this purpose. The conference further continued the series of 4 former Interval conferences focusing on interval methods and their application in science and engineering. The objectives are to propagate current applications and research as well as to promote a greater understanding and increased awareness of the subject matters. The symposium was held in Karlsruhe the European cradle of interval arithmetic and self-validating numerics and attracted 193 researchers from 33 countries. 12 invited and 153 contributed talks were given. But not only the quantity was overwhelming we were deeply impressed by the emerging maturity of our discipline. There were many talks discussing a wide variety of serious applications stretching all parts of mathematical modelling. New efficient, publicly available or even commercial tools were proposed or presented, and also foundations of the theory of intervals and reliable computations were considerably strengthened.

Dynamics: Numerical Explorations

Dynamics: Numerical Explorations PDF Author: Helena E. Nusse
Publisher: Springer
ISBN: 1468402315
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
Co-author J.A. Yorke developed an array of tools to help visualize the properties of dynamical systems, while Yorke found it useful to combine these various basic tools into one single package: Dynamics. The program together with this manual provides an introduction to and an overview of fundamental, sophisticated tools and numerical methods together with many simple examples. All numerical methods described in this handbook are implemented in the program, which is capable of, among others: iterating maps and solving differential equations; plotting trajectories; featuring an array of simple commands; printing a created picture in resolution higher than that of the screen. Requires a UNIX workstation running X11 graphics or a PC.