Author: M.F. Thorpe
Publisher: Springer Science & Business Media
ISBN: 0306470896
Category : Computers
Languages : en
Pages : 435
Book Description
Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.
Rigidity Theory and Applications
Author: M.F. Thorpe
Publisher: Springer Science & Business Media
ISBN: 0306470896
Category : Computers
Languages : en
Pages : 435
Book Description
Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.
Publisher: Springer Science & Business Media
ISBN: 0306470896
Category : Computers
Languages : en
Pages : 435
Book Description
Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.
Euclidean Distance Matrices and Their Applications in Rigidity Theory
Author: Abdo Y. Alfakih
Publisher: Springer
ISBN: 3319978462
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in our approach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.
Publisher: Springer
ISBN: 3319978462
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in our approach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.
Rigidity Theory and Applications
Author: M.F. Thorpe
Publisher: Springer Science & Business Media
ISBN: 0306461153
Category : Computers
Languages : en
Pages : 435
Book Description
Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.
Publisher: Springer Science & Business Media
ISBN: 0306461153
Category : Computers
Languages : en
Pages : 435
Book Description
Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.
Rigid Designation and Theoretical Identities
Author: Joseph LaPorte
Publisher: Oxford University Press
ISBN: 0199609209
Category : Language Arts & Disciplines
Languages : en
Pages : 260
Book Description
Joseph LaPorte offers an original account of the connections between the reference of words for properties and kinds, and theoretical identity statements. He argues that terms for properties, as well as for concrete objects, are rigid designators, and defends the Kripkean tradition of theoretical identities.
Publisher: Oxford University Press
ISBN: 0199609209
Category : Language Arts & Disciplines
Languages : en
Pages : 260
Book Description
Joseph LaPorte offers an original account of the connections between the reference of words for properties and kinds, and theoretical identity statements. He argues that terms for properties, as well as for concrete objects, are rigid designators, and defends the Kripkean tradition of theoretical identities.
Rigidity in Dynamics and Geometry
Author: Marc Burger
Publisher: Springer Science & Business Media
ISBN: 9783540432432
Category : Mathematics
Languages : en
Pages : 520
Book Description
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
Publisher: Springer Science & Business Media
ISBN: 9783540432432
Category : Mathematics
Languages : en
Pages : 520
Book Description
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
Rigidity and Symmetry
Author: Robert Connelly
Publisher: Springer
ISBN: 1493907816
Category : Mathematics
Languages : en
Pages : 378
Book Description
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.
Publisher: Springer
ISBN: 1493907816
Category : Mathematics
Languages : en
Pages : 378
Book Description
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.
Applications of Polynomial Systems
Author: David A. Cox
Publisher: American Mathematical Soc.
ISBN: 1470451379
Category : Education
Languages : en
Pages : 264
Book Description
Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.
Publisher: American Mathematical Soc.
ISBN: 1470451379
Category : Education
Languages : en
Pages : 264
Book Description
Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.
Counting on Frameworks
Author: Jack E. Graver
Publisher: Cambridge University Press
ISBN: 9780883853313
Category : Mathematics
Languages : en
Pages : 196
Book Description
Book developing a mathematical theory of rigidity, for undergraduates working in modelling or graph theory.
Publisher: Cambridge University Press
ISBN: 9780883853313
Category : Mathematics
Languages : en
Pages : 196
Book Description
Book developing a mathematical theory of rigidity, for undergraduates working in modelling or graph theory.
Computers, Rigidity, and Moduli
Author: Shmuel Weinberger
Publisher: Princeton University Press
ISBN: 9780691118895
Category : Computers
Languages : en
Pages : 204
Book Description
This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow. The main sort of algorithmic problem that arises is recognition: is the presented object equivalent to some standard one? If it is difficult to determine whether the problem is solvable, then the original object has doppelgängers--that is, other objects that are extremely difficult to distinguish from it. Many new questions emerge about the algorithmic nature of known geometric theorems, about "dichotomy problems," and about the metric entropy of moduli space. Weinberger studies them using tools from group theory, computability, differential geometry, and topology, all of which he explains before use. Since several examples are worked out, the overarching principles are set in a clear relief that goes beyond the details of any one problem.
Publisher: Princeton University Press
ISBN: 9780691118895
Category : Computers
Languages : en
Pages : 204
Book Description
This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow. The main sort of algorithmic problem that arises is recognition: is the presented object equivalent to some standard one? If it is difficult to determine whether the problem is solvable, then the original object has doppelgängers--that is, other objects that are extremely difficult to distinguish from it. Many new questions emerge about the algorithmic nature of known geometric theorems, about "dichotomy problems," and about the metric entropy of moduli space. Weinberger studies them using tools from group theory, computability, differential geometry, and topology, all of which he explains before use. Since several examples are worked out, the overarching principles are set in a clear relief that goes beyond the details of any one problem.
Distance Geometry
Author: Antonio Mucherino
Publisher: Springer
ISBN: 9781489985781
Category : Mathematics
Languages : en
Pages : 0
Book Description
This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.
Publisher: Springer
ISBN: 9781489985781
Category : Mathematics
Languages : en
Pages : 0
Book Description
This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.