Author:
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 792
Book Description
Computer Systems Organization -- Parallel architecture.
Resources in Parallel and Concurrent Systems
Author:
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 792
Book Description
Computer Systems Organization -- Parallel architecture.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 792
Book Description
Computer Systems Organization -- Parallel architecture.
Parallel and Concurrent Programming in Haskell
Author: Simon Marlow
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322
Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322
Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network
Parallel Programming Using C++
Author: Gregory V. Wilson
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
On Concurrent Programming
Author: Fred B. Schneider
Publisher: Springer Science & Business Media
ISBN: 1461218306
Category : Computers
Languages : en
Pages : 482
Book Description
Here, one of the leading figures in the field provides a comprehensive survey of the subject, beginning with prepositional logic and concluding with concurrent programming. It is based on graduate courses taught at Cornell University and is designed for use as a graduate text. Professor Schneier emphasises the use of formal methods and assertional reasoning using notation and paradigms drawn from programming to drive the exposition, while exercises at the end of each chapter extend and illustrate the main themes covered. As a result, all those interested in studying concurrent computing will find this an invaluable approach to the subject.
Publisher: Springer Science & Business Media
ISBN: 1461218306
Category : Computers
Languages : en
Pages : 482
Book Description
Here, one of the leading figures in the field provides a comprehensive survey of the subject, beginning with prepositional logic and concluding with concurrent programming. It is based on graduate courses taught at Cornell University and is designed for use as a graduate text. Professor Schneier emphasises the use of formal methods and assertional reasoning using notation and paradigms drawn from programming to drive the exposition, while exercises at the end of each chapter extend and illustrate the main themes covered. As a result, all those interested in studying concurrent computing will find this an invaluable approach to the subject.
Real World Haskell
Author: Bryan O'Sullivan
Publisher: "O'Reilly Media, Inc."
ISBN: 0596554303
Category : Computers
Languages : en
Pages : 714
Book Description
This easy-to-use, fast-moving tutorial introduces you to functional programming with Haskell. You'll learn how to use Haskell in a variety of practical ways, from short scripts to large and demanding applications. Real World Haskell takes you through the basics of functional programming at a brisk pace, and then helps you increase your understanding of Haskell in real-world issues like I/O, performance, dealing with data, concurrency, and more as you move through each chapter.
Publisher: "O'Reilly Media, Inc."
ISBN: 0596554303
Category : Computers
Languages : en
Pages : 714
Book Description
This easy-to-use, fast-moving tutorial introduces you to functional programming with Haskell. You'll learn how to use Haskell in a variety of practical ways, from short scripts to large and demanding applications. Real World Haskell takes you through the basics of functional programming at a brisk pace, and then helps you increase your understanding of Haskell in real-world issues like I/O, performance, dealing with data, concurrency, and more as you move through each chapter.
Topics in Parallel and Distributed Computing
Author: Sushil K Prasad
Publisher: Morgan Kaufmann
ISBN: 0128039388
Category : Computers
Languages : en
Pages : 359
Book Description
Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
Publisher: Morgan Kaufmann
ISBN: 0128039388
Category : Computers
Languages : en
Pages : 359
Book Description
Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
Understanding Concurrent Systems
Author: A.W. Roscoe
Publisher: Springer Science & Business Media
ISBN: 1848822588
Category : Computers
Languages : en
Pages : 528
Book Description
CSP notation has been used extensively for teaching and applying concurrency theory, ever since the publication of the text Communicating Sequential Processes by C.A.R. Hoare in 1985. Both a programming language and a specification language, the theory of CSP helps users to understand concurrent systems, and to decide whether a program meets its specification. As a member of the family of process algebras, the concepts of communication and interaction are presented in an algebraic style. An invaluable reference on the state of the art in CSP, Understanding Concurrent Systems also serves as a comprehensive introduction to the field, in addition to providing material for a number of more advanced courses. A first point of reference for anyone wanting to use CSP or learn about its theory, the book also introduces other views of concurrency, using CSP to model and explain these. The text is fully integrated with CSP-based tools such as FDR, and describes how to create new tools based on FDR. Most of the book relies on no theoretical background other than a basic knowledge of sets and sequences. Sophisticated mathematical arguments are avoided whenever possible. Topics and features: presents a comprehensive introduction to CSP; discusses the latest advances in CSP, covering topics of operational semantics, denotational models, finite observation models and infinite-behaviour models, and algebraic semantics; explores the practical application of CSP, including timed modelling, discrete modelling, parameterised verifications and the state explosion problem, and advanced topics in the use of FDR; examines the ability of CSP to describe and enable reasoning about parallel systems modelled in other paradigms; covers a broad variety of concurrent systems, including combinatorial, timed, priority-based, mobile, shared variable, statecharts, buffered and asynchronous systems; contains exercises and case studies to support the text; supplies further tools and information at the associated website: http://www.comlab.ox.ac.uk/ucs/. From undergraduate students of computer science in need of an introduction to the area, to researchers and practitioners desiring a more in-depth understanding of theory and practice of concurrent systems, this broad-ranging text/reference is essential reading for anyone interested in Hoare’s CSP.
Publisher: Springer Science & Business Media
ISBN: 1848822588
Category : Computers
Languages : en
Pages : 528
Book Description
CSP notation has been used extensively for teaching and applying concurrency theory, ever since the publication of the text Communicating Sequential Processes by C.A.R. Hoare in 1985. Both a programming language and a specification language, the theory of CSP helps users to understand concurrent systems, and to decide whether a program meets its specification. As a member of the family of process algebras, the concepts of communication and interaction are presented in an algebraic style. An invaluable reference on the state of the art in CSP, Understanding Concurrent Systems also serves as a comprehensive introduction to the field, in addition to providing material for a number of more advanced courses. A first point of reference for anyone wanting to use CSP or learn about its theory, the book also introduces other views of concurrency, using CSP to model and explain these. The text is fully integrated with CSP-based tools such as FDR, and describes how to create new tools based on FDR. Most of the book relies on no theoretical background other than a basic knowledge of sets and sequences. Sophisticated mathematical arguments are avoided whenever possible. Topics and features: presents a comprehensive introduction to CSP; discusses the latest advances in CSP, covering topics of operational semantics, denotational models, finite observation models and infinite-behaviour models, and algebraic semantics; explores the practical application of CSP, including timed modelling, discrete modelling, parameterised verifications and the state explosion problem, and advanced topics in the use of FDR; examines the ability of CSP to describe and enable reasoning about parallel systems modelled in other paradigms; covers a broad variety of concurrent systems, including combinatorial, timed, priority-based, mobile, shared variable, statecharts, buffered and asynchronous systems; contains exercises and case studies to support the text; supplies further tools and information at the associated website: http://www.comlab.ox.ac.uk/ucs/. From undergraduate students of computer science in need of an introduction to the area, to researchers and practitioners desiring a more in-depth understanding of theory and practice of concurrent systems, this broad-ranging text/reference is essential reading for anyone interested in Hoare’s CSP.
PThreads Programming
Author: Bradford Nichols
Publisher: "O'Reilly Media, Inc."
ISBN: 1565921151
Category : Computers
Languages : en
Pages : 289
Book Description
With threads programming, multiple tasks run concurrently within the same program. They can share a single CPU as processes do or take advantage of multiple CPUs when available. They provide a clean way to divide the tasks of a program while sharing data.
Publisher: "O'Reilly Media, Inc."
ISBN: 1565921151
Category : Computers
Languages : en
Pages : 289
Book Description
With threads programming, multiple tasks run concurrently within the same program. They can share a single CPU as processes do or take advantage of multiple CPUs when available. They provide a clean way to divide the tasks of a program while sharing data.
Is Parallel Programming Hard
Author: Paul E. McKenney
Publisher:
ISBN: 9781320627306
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781320627306
Category :
Languages : en
Pages :
Book Description
The Art of Concurrency
Author: Clay Breshears
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555784
Category : Computers
Languages : en
Pages : 306
Book Description
If you're looking to take full advantage of multi-core processors with concurrent programming, this practical book provides the knowledge and hands-on experience you need. The Art of Concurrency is one of the few resources to focus on implementing algorithms in the shared-memory model of multi-core processors, rather than just theoretical models or distributed-memory architectures. The book provides detailed explanations and usable samples to help you transform algorithms from serial to parallel code, along with advice and analysis for avoiding mistakes that programmers typically make when first attempting these computations. Written by an Intel engineer with over two decades of parallel and concurrent programming experience, this book will help you: Understand parallelism and concurrency Explore differences between programming for shared-memory and distributed-memory Learn guidelines for designing multithreaded applications, including testing and tuning Discover how to make best use of different threading libraries, including Windows threads, POSIX threads, OpenMP, and Intel Threading Building Blocks Explore how to implement concurrent algorithms that involve sorting, searching, graphs, and other practical computations The Art of Concurrency shows you how to keep algorithms scalable to take advantage of new processors with even more cores. For developing parallel code algorithms for concurrent programming, this book is a must.
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555784
Category : Computers
Languages : en
Pages : 306
Book Description
If you're looking to take full advantage of multi-core processors with concurrent programming, this practical book provides the knowledge and hands-on experience you need. The Art of Concurrency is one of the few resources to focus on implementing algorithms in the shared-memory model of multi-core processors, rather than just theoretical models or distributed-memory architectures. The book provides detailed explanations and usable samples to help you transform algorithms from serial to parallel code, along with advice and analysis for avoiding mistakes that programmers typically make when first attempting these computations. Written by an Intel engineer with over two decades of parallel and concurrent programming experience, this book will help you: Understand parallelism and concurrency Explore differences between programming for shared-memory and distributed-memory Learn guidelines for designing multithreaded applications, including testing and tuning Discover how to make best use of different threading libraries, including Windows threads, POSIX threads, OpenMP, and Intel Threading Building Blocks Explore how to implement concurrent algorithms that involve sorting, searching, graphs, and other practical computations The Art of Concurrency shows you how to keep algorithms scalable to take advantage of new processors with even more cores. For developing parallel code algorithms for concurrent programming, this book is a must.