Research Trends in Combinatorial Optimization

Research Trends in Combinatorial Optimization PDF Author: William J. Cook
Publisher: Springer Science & Business Media
ISBN: 3540767967
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
The editors and authors dedicate this book to Bernhard Korte on the occasion of his seventieth birthday. We, the editors, are happy about the overwhelming feedback to our initiative to honor him with this book and with a workshop in Bonn on November 3–7,2008.Althoughthiswouldbeareasontolookback,wewouldratherliketolook forward and see what are the interesting research directions today. This book is written by leading experts in combinatorial optimization. All - pers were carefully reviewed, and eventually twenty-three of the invited papers were accepted for this book. The breadth of topics is typical for the eld: combinatorial optimization builds bridges between areas like combinatorics and graph theory, submodular functions and matroids, network ows and connectivity, approximation algorithms and mat- matical programming, computational geometry and polyhedral combinatorics. All these topics are related, and they are all addressed in this book. Combi- torial optimization is also known for its numerous applications. To limit the scope, however, this book is not primarily about applications, although some are mentioned at various places. Most papers in this volume are surveys that provide an excellent overview of an activeresearcharea,butthisbookalsocontainsmanynewresults.Highlightingmany of the currently most interesting research directions in combinatorial optimization, we hope that this book constitutes a good basis for future research in these areas.

Evolutionary Computation in Combinatorial Optimization

Evolutionary Computation in Combinatorial Optimization PDF Author: Bin Hu
Publisher: Springer
ISBN: 9783319554525
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2017, held in Amsterdam, The Netherlands, in April 2017, co-located with the Evo*2017 events EuroGP, EvoMUSART and EvoApplications. The 16 revised full papers presented were carefully reviewed and selected from 39 submissions. The papers cover both empirical and theoretical studies on a wide range of academic and real-world applications. The methods include evolutionary and memetic algorithms, large neighborhood search, estimation of distribution algorithms, beam search, ant colony optimization, hyper-heuristics and matheuristics. Applications include both traditional domains, such as knapsack problem, vehicle routing, scheduling problems and SAT; and newer domains such as the traveling thief problem, location planning for car-sharing systems and spacecraft trajectory optimization. Papers also study important concepts such as pseudo-backbones, phase transitions in local optima networks, and the analysis of operators. This wide range of topics makes the EvoCOP proceedings an important source for current research trends in combinatorial optimization.

Surveys in Combinatorics 2024

Surveys in Combinatorics 2024 PDF Author: Felix Fischer
Publisher: Cambridge University Press
ISBN: 1009490540
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.

Combinatorial Optimization and Applications

Combinatorial Optimization and Applications PDF Author: Teodor Gabriel Crainic
Publisher: Springer Nature
ISBN: 3031576039
Category :
Languages : en
Pages : 506

Get Book Here

Book Description


Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches

Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches PDF Author: Yin, Peng-Yeng
Publisher: IGI Global
ISBN: 146662146X
Category : Computers
Languages : en
Pages : 375

Get Book Here

Book Description
Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.

Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Handbook of Graph Theory, Combinatorial Optimization, and Algorithms PDF Author: Krishnaiyan "KT" Thulasiraman
Publisher: CRC Press
ISBN: 1420011073
Category : Computers
Languages : en
Pages : 1217

Get Book Here

Book Description
The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c

Spectral Algorithms

Spectral Algorithms PDF Author: Ravindran Kannan
Publisher: Now Publishers Inc
ISBN: 1601982747
Category : Computers
Languages : en
Pages : 153

Get Book Here

Book Description
Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors. They are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to "discrete" as well as "continuous" problems. Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on "sampling on the fly" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.

Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics PDF Author: Teofilo F. Gonzalez
Publisher: CRC Press
ISBN: 1351235400
Category : Computers
Languages : en
Pages : 840

Get Book Here

Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.

Discrete Convex Analysis

Discrete Convex Analysis PDF Author: Kazuo Murota
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.

Meta-Heuristics

Meta-Heuristics PDF Author: Stefan Voß
Publisher: Springer Science & Business Media
ISBN: 1461557755
Category : Business & Economics
Languages : en
Pages : 513

Get Book Here

Book Description
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimizations comprises a carefully refereed selection of extended versions of the best papers presented at the Second Meta-Heuristics Conference (MIC 97). The selected articles describe the most recent developments in theory and applications of meta-heuristics, heuristics for specific problems, and comparative case studies. The book is divided into six parts, grouped mainly by the techniques considered. The extensive first part with twelve papers covers tabu search and its application to a great variety of well-known combinatorial optimization problems (including the resource-constrained project scheduling problem and vehicle routing problems). In the second part we find one paper where tabu search and simulated annealing are investigated comparatively and two papers which consider hybrid methods combining tabu search with genetic algorithms. The third part has four papers on genetic and evolutionary algorithms. Part four arrives at a new paradigm within meta-heuristics. The fifth part studies the behavior of parallel local search algorithms mainly from a tabu search perspective. The final part examines a great variety of additional meta-heuristics topics, including neural networks and variable neighbourhood search as well as guided local search. Furthermore, the integration of meta-heuristics with the branch-and-bound paradigm is investigated.