Research on Modern Power Semiconductor Modelling Methodology for Efficiency Evaluation of Power Electronic Systems in Electromagnetic Transient Simulation

Research on Modern Power Semiconductor Modelling Methodology for Efficiency Evaluation of Power Electronic Systems in Electromagnetic Transient Simulation PDF Author: Yanming Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Power electronics technology has rapidly developed during the past decades. Power electronics systems aim to achieve high efficiency as power conversion interfaces while fulfilling the performance and reliability requirements. The key to achieving these objectives is power semiconductors, which dictate the power electronics system's efficiency, power density, and reliability. In recent years, traditional Silicon (Si) devices are reaching their material limits. Meanwhile, new Wide-Bandgap (WBG) devices such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices have been commercialized, featuring high breakdown voltage, fast switching speed, and high thermal capability. On the other hand, semiconductor devices are typically exposed to repetitive heat pulses and are often the most critical components affecting system reliability. Consequently, a comprehensive modelling method for modern power semiconductors that can describe various devices' switching behaviors is highly desirable by power electronics engineers and manufacturers. This research focuses on developing a simulation-based modelling methodology for modern power semiconductors to evaluate the power electronics system's efficiency. A multi-level simulation strategy has been proposed and implemented in PSCAD/EMTDC. A generalized transient semiconductor model has been developed, which can reproduce the device's switching behaviors. Subsequently, the power losses are obtained to form a multi-dimensional power loss look-up table under a wide range of operating conditions. A dynamic thermal model for temperature estimation, and a typical electrical network using simple switch models for semiconductor devices have been implemented. The junction temperature is updated every switching cycle by the power loss with a thermal model and influence back to the electrical simulation. In this way, a closed-loop electro-thermal simulation is formed to evaluate both electrical and thermal performances in a single simulator with a range of acceptable accuracy. A double pulse test platform has been designed and built for device characterizations and power loss verifications. Moreover, a single-phase grid-tied buck-boost type inverter application has been selected as a case study and built to study the proposed method. The measured results indicate that the proposed approach is highly promising for power electronics engineers to evaluate and optimize a system during the early design stage.

Research on Modern Power Semiconductor Modelling Methodology for Efficiency Evaluation of Power Electronic Systems in Electromagnetic Transient Simulation

Research on Modern Power Semiconductor Modelling Methodology for Efficiency Evaluation of Power Electronic Systems in Electromagnetic Transient Simulation PDF Author: Yanming Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Power electronics technology has rapidly developed during the past decades. Power electronics systems aim to achieve high efficiency as power conversion interfaces while fulfilling the performance and reliability requirements. The key to achieving these objectives is power semiconductors, which dictate the power electronics system's efficiency, power density, and reliability. In recent years, traditional Silicon (Si) devices are reaching their material limits. Meanwhile, new Wide-Bandgap (WBG) devices such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices have been commercialized, featuring high breakdown voltage, fast switching speed, and high thermal capability. On the other hand, semiconductor devices are typically exposed to repetitive heat pulses and are often the most critical components affecting system reliability. Consequently, a comprehensive modelling method for modern power semiconductors that can describe various devices' switching behaviors is highly desirable by power electronics engineers and manufacturers. This research focuses on developing a simulation-based modelling methodology for modern power semiconductors to evaluate the power electronics system's efficiency. A multi-level simulation strategy has been proposed and implemented in PSCAD/EMTDC. A generalized transient semiconductor model has been developed, which can reproduce the device's switching behaviors. Subsequently, the power losses are obtained to form a multi-dimensional power loss look-up table under a wide range of operating conditions. A dynamic thermal model for temperature estimation, and a typical electrical network using simple switch models for semiconductor devices have been implemented. The junction temperature is updated every switching cycle by the power loss with a thermal model and influence back to the electrical simulation. In this way, a closed-loop electro-thermal simulation is formed to evaluate both electrical and thermal performances in a single simulator with a range of acceptable accuracy. A double pulse test platform has been designed and built for device characterizations and power loss verifications. Moreover, a single-phase grid-tied buck-boost type inverter application has been selected as a case study and built to study the proposed method. The measured results indicate that the proposed approach is highly promising for power electronics engineers to evaluate and optimize a system during the early design stage.

Transients of Modern Power Electronics

Transients of Modern Power Electronics PDF Author: Hua Bai
Publisher: John Wiley & Sons
ISBN: 1119972760
Category : Technology & Engineering
Languages : en
Pages : 374

Get Book Here

Book Description
In high power, high voltage electronics systems, a strategy to manage short timescale energy imbalances is fundamental to the system reliability. Without a theoretical framework, harmful local convergence of energy can affect the dynamic process of transformation, transmission, and storage which create an unreliable system. With an original approach that encourages understanding of both macroscopic and microscopic factors, the authors offer a solution. They demonstrate the essential theory and methodology for the design, modeling and prototyping of modern power electronics converters to create highly effective systems. Current applications such as renewable energy systems and hybrid electric vehicles are discussed in detail by the authors. Key features: offers a logical guide that is widely applicable to power electronics across power supplies, renewable energy systems, and many other areas analyses the short-scale (nano-micro second) transient phenomena and the transient processes in nearly all major timescales, from device switching processes at the nanoscale level, to thermal and mechanical processes at second level explores transient causes and shows how to correct them by changing the control algorithm or peripheral circuit includes two case studies on power electronics in hybrid electric vehicles and renewable energy systems Practitioners in major power electronic companies will benefit from this reference, especially design engineers aiming for optimal system performance. It will also be of value to faculty staff and graduate students specializing in power electronics within academia.

Electromagnetic Transients of Power Electronics Systems

Electromagnetic Transients of Power Electronics Systems PDF Author: Zhengming Zhao
Publisher: Springer
ISBN: 9811088128
Category : Technology & Engineering
Languages : en
Pages : 469

Get Book Here

Book Description
This book discusses topics related to power electronics, especially electromagnetic transient analysis and control of high-power electronics conversion. It focuses on the re-evaluation of power electronics, transient analysis and modeling, device-based system-safe operating area, and energy balance-based control methods, and presenting, for the first time, numerous experimental results for the transient process of various real-world converters. The book systematically presents both theoretical analysis and practical applications. The first chapter discusses the structure and attributes of power electronics systems, highlighting the analysis and synthesis, while the second chapter explores the transient process and modeling for power electronics systems. The transient features of power devices at switching-on/off, transient conversion circuit with stray parameters and device-based system-safe operating area are described in the subsequent three chapters. The book also examines the measurement of transient processes, electromagnetic pulses and their series, as well as high-performance, closed-loop control, and expounds the basic principles and method of the energy-balanced control strategy. Lastly, it introduces the applications of transient analysis of typical power electronics systems. The book is valuable as a textbook for college students, and as a reference resource for electrical engineers as well as anyone working in the field of high-power electronics system.

Power Integrity Modeling and Design for Semiconductors and Systems

Power Integrity Modeling and Design for Semiconductors and Systems PDF Author: Madhavan Swaminathan
Publisher: Pearson Education
ISBN: 0132797178
Category : Technology & Engineering
Languages : en
Pages : 597

Get Book Here

Book Description
The First Comprehensive, Example-Rich Guide to Power Integrity Modeling Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art. Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise. The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications. The authors Introduce power delivery network components, analysis, high-frequency measurement, and modeling requirements Thoroughly explain modeling of power/ground planes, including plane behavior, lumped modeling, distributed circuit-based approaches, and much more Offer in-depth coverage of simultaneous switching noise, including modeling for return currents using time- and frequency-domain analysis Introduce several leading time-domain simulation methods, such as macromodeling, and discuss their advantages and disadvantages Present the application of the modeling methods on several advanced case studies that include high-speed servers, high-speed differential signaling, chip package analysis, materials characterization, embedded decoupling capacitors, and electromagnetic bandgap structures This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.

Power Electronic Converters Modeling and Control

Power Electronic Converters Modeling and Control PDF Author: Seddik Bacha
Publisher: Springer Science & Business Media
ISBN: 1447154789
Category : Technology & Engineering
Languages : en
Pages : 469

Get Book Here

Book Description
Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers because of their significance in grid-connected applications; and · nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.

Real-Time Simulation Technology for Modern Power Electronics

Real-Time Simulation Technology for Modern Power Electronics PDF Author: Hao Bai
Publisher: Elsevier
ISBN: 032399542X
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
Real-Time Simulation Technology for Modern Power Electronics provides an invaluable foundation and state-of-the-art review on the most advanced implementations of real-time simulation as it appears poised to revolutionize the modeling of power electronics. The book opens with a discussion of power electronics device physic modeling, component modeling, and power converter modeling before addressing numerical methods to solve converter model, emphasizing speed and accuracy. It discusses both CPU-based and FPGA-based real-time implementations and provides an extensive review of current applications, including hardware-in-the-loop and its case studies in the micro-grid and electric vehicle applications. The book closes with a review of the near and long-term outlooks for the evolving technology. Collectively, the work provides a systematic resource for students, researchers, and engineers in the electrical engineering and other closely related fields. Introduces the theoretical building blocks of real-time power electronic simulation through advanced modern implementations Includes modern case studies and implementations across diverse applications, including electric vehicle component testing and microgrid controller testing Discusses FPGA-based real-time simulation techniques complete with illustrative examples, comparisons with CPU-based simulation, computational performance and co-simulation architectures

Energy Efficiency of Modern Power and Energy Systems

Energy Efficiency of Modern Power and Energy Systems PDF Author: Shady H E Abdel Aleem
Publisher: Elsevier
ISBN: 0443216452
Category : Business & Economics
Languages : en
Pages : 544

Get Book Here

Book Description
Energy Efficiency and Management of Power and Energy Systems introduces students and researchers to a broad range of power system management challenges, technologies, and solutions. This book begins with an analysis of system technology’s current state, the most pressing problems, and the background to challenges in integrating renewable energy sources. Technologies including smart grids, green building, and worker requirements are covered. Subsequent chapters break down potential management solutions, including specific problem-solving for solar, wind, and hybrid systems. Finally, specific case studies from a global geographical range zero in on critical questions facing the present industry. Providing meticulously researched literature reviews for guiding deeper reading, Energy Efficiency and Management of Power and Energy Systems leads readers from contextual understanding to specific case studies and solutions for sustainable power systems. Provides a comprehensive reference with extensive guidance on deeper reading Develops understanding and solution design using case studies from a global range of geographies with differing power needs and resources Guides readers through the evaluation and analysis of the capabilities and limitations of a range of transmission and distribution technologies

Power Systems Electromagnetic Transients Simulation

Power Systems Electromagnetic Transients Simulation PDF Author: Neville Watson
Publisher: Institution of Engineering and Technology
ISBN: 1785614991
Category : Technology & Engineering
Languages : en
Pages : 526

Get Book Here

Book Description
Accurate knowledge of electromagnetic power system transients is crucial to the operation of an economic, efficient and environmentally friendly power systems network without compromising on the reliability and quality of electrical power supply. Electromagnetic transient (EMT) simulation has therefore become a universal tool for the analysis of power system electromagnetic transients in the range of nanoseconds to seconds, and is the backbone for the design and planning of power systems, as well as for the investigation of problems. In this fully revised and updated new edition of this classic book, a thorough review of EMT simulation is provided, with many simple examples included to clarify difficult concepts. Topics covered include analysis of continuous and discrete systems; state variable analysis; numerical integrator substitution; the root-matching method; transmission lines and cables; transformers and rotating plant; control and protection; power electronic systems; frequency-dependent network equivalents; steady-state assessment; mixed time-frame simulation; transient simulation in real-time; and applications.

Control Techniques for Power Converters with Integrated Circuit

Control Techniques for Power Converters with Integrated Circuit PDF Author: Wen-Wei Chen
Publisher: Springer
ISBN: 9811070040
Category : Technology & Engineering
Languages : en
Pages : 195

Get Book Here

Book Description
This book offers an overview of power electronic applications in the study of power integrated circuit (IC) design, collecting novel research ideas and insights into fast transient response to prevent the output voltage from dropping significantly at the undershoot. It also discusses techniques and training to save energy and increase load efficiency, as well as fast transient response and high efficiency, which are the most important factors for consumer products that implement power IC. Lastly, the book focuses on power electronics for system loop analysis and optimal compensation design to help users and engineers implement their applications. The book is a valuable resource for university researchers, power IC R&D engineers, application engineers and graduate students in power electronics who wish to learn about the power IC design principles, methods, system behavior, and applications in consumer products.

Power Systems Electromagnetic Transients Simulation

Power Systems Electromagnetic Transients Simulation PDF Author: Neville Watson
Publisher: IET
ISBN: 0852961065
Category : Science
Languages : en
Pages : 449

Get Book Here

Book Description
Electromagnetic transients simulation (EMTS) has become a universal tool for the analysis of power system electromagnetic transients in the range of nanoseconds to seconds. This book provides a thorough review of EMTS and many simple examples are included to clarify difficult concepts. This book will be of particular value to advanced engineering students and practising power systems engineers.