Author: Alain Berlinet
Publisher: Springer Science & Business Media
ISBN: 1441990968
Category : Business & Economics
Languages : en
Pages : 369
Book Description
The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
Reproducing Kernel Hilbert Spaces in Probability and Statistics
Author: Alain Berlinet
Publisher: Springer Science & Business Media
ISBN: 1441990968
Category : Business & Economics
Languages : en
Pages : 369
Book Description
The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
Publisher: Springer Science & Business Media
ISBN: 1441990968
Category : Business & Economics
Languages : en
Pages : 369
Book Description
The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
An Introduction to the Theory of Reproducing Kernel Hilbert Spaces
Author: Vern I. Paulsen
Publisher: Cambridge University Press
ISBN: 1107104092
Category : Mathematics
Languages : en
Pages : 193
Book Description
A unique introduction to reproducing kernel Hilbert spaces, covering the fundamental underlying theory as well as a range of applications.
Publisher: Cambridge University Press
ISBN: 1107104092
Category : Mathematics
Languages : en
Pages : 193
Book Description
A unique introduction to reproducing kernel Hilbert spaces, covering the fundamental underlying theory as well as a range of applications.
A Primer on Reproducing Kernel Hilbert Spaces
Author: Jonathan H. Manton
Publisher:
ISBN: 9781680830934
Category : Hilbert space
Languages : en
Pages : 126
Book Description
Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.
Publisher:
ISBN: 9781680830934
Category : Hilbert space
Languages : en
Pages : 126
Book Description
Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.
The Schur Algorithm, Reproducing Kernel Spaces and System Theory
Author: Daniel Alpay
Publisher: American Mathematical Soc.
ISBN: 9780821821558
Category : Computers
Languages : en
Pages : 162
Book Description
The class of Schur functions consists of analytic functions on the unit disk that are bounded by $1$. The Schur algorithm associates to any such function a sequence of complex constants, which is much more useful than the Taylor coefficients. There is a generalization to matrix-valued functions and a corresponding algorithm. These generalized Schur functions have important applications to the theory of linear operators, to signal processing and control theory, and to other areas of engineering. In this book, Alpay looks at matrix-valued Schur functions and their applications from the unifying point of view of spaces with reproducing kernels. This approach is used here to study the relationship between the modeling of time-invariant dissipative linear systems and the theory of linear operators. The inverse scattering problem plays a key role in the exposition. The point of view also allows for a natural way to tackle more general cases, such as nonstationary systems, non-positive metrics, and pairs of commuting nonself-adjoint operators. This is the English translation of a volume originally published in French by the Societe Mathematique de France. Translated by Stephen S. Wilson.
Publisher: American Mathematical Soc.
ISBN: 9780821821558
Category : Computers
Languages : en
Pages : 162
Book Description
The class of Schur functions consists of analytic functions on the unit disk that are bounded by $1$. The Schur algorithm associates to any such function a sequence of complex constants, which is much more useful than the Taylor coefficients. There is a generalization to matrix-valued functions and a corresponding algorithm. These generalized Schur functions have important applications to the theory of linear operators, to signal processing and control theory, and to other areas of engineering. In this book, Alpay looks at matrix-valued Schur functions and their applications from the unifying point of view of spaces with reproducing kernels. This approach is used here to study the relationship between the modeling of time-invariant dissipative linear systems and the theory of linear operators. The inverse scattering problem plays a key role in the exposition. The point of view also allows for a natural way to tackle more general cases, such as nonstationary systems, non-positive metrics, and pairs of commuting nonself-adjoint operators. This is the English translation of a volume originally published in French by the Societe Mathematique de France. Translated by Stephen S. Wilson.
Multivariate Statistical Machine Learning Methods for Genomic Prediction
Author: Osval Antonio Montesinos López
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Reproducing Kernel Hilbert Spaces
Author: Howard L. Weinert
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Pick Interpolation and Hilbert Function Spaces
Author: Jim Agler
Publisher: American Mathematical Society
ISBN: 1470468557
Category : Mathematics
Languages : en
Pages : 330
Book Description
The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.
Publisher: American Mathematical Society
ISBN: 1470468557
Category : Mathematics
Languages : en
Pages : 330
Book Description
The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.
Digital Signal Processing with Kernel Methods
Author: Jose Luis Rojo-Alvarez
Publisher: John Wiley & Sons
ISBN: 1118611799
Category : Technology & Engineering
Languages : en
Pages : 665
Book Description
A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.
Publisher: John Wiley & Sons
ISBN: 1118611799
Category : Technology & Engineering
Languages : en
Pages : 665
Book Description
A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.
Theory of Reproducing Kernels and Applications
Author: Saburou Saitoh
Publisher: Springer
ISBN: 9789811005299
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications.In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book.Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations.In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results.Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions.In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, andas well, a general integral transform theory are introduced.In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.
Publisher: Springer
ISBN: 9789811005299
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications.In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book.Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations.In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results.Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions.In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, andas well, a general integral transform theory are introduced.In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.
Advanced Linear Modeling
Author: Ronald Christensen
Publisher: Springer Nature
ISBN: 3030291642
Category : Mathematics
Languages : en
Pages : 618
Book Description
This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.
Publisher: Springer Nature
ISBN: 3030291642
Category : Mathematics
Languages : en
Pages : 618
Book Description
This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.