Representation Theory and Algebraic Geometry

Representation Theory and Algebraic Geometry PDF Author: A. Martsinkovsky
Publisher: Cambridge University Press
ISBN: 9780521577892
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
For any researcher working in representation theory, algebraic or arithmetic geometry.

Representation Theory and Algebraic Geometry

Representation Theory and Algebraic Geometry PDF Author: A. Martsinkovsky
Publisher: Cambridge University Press
ISBN: 9780521577892
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
For any researcher working in representation theory, algebraic or arithmetic geometry.

Representation Theory and Complex Geometry

Representation Theory and Complex Geometry PDF Author: Neil Chriss
Publisher: Birkhauser
ISBN: 0817637923
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This volume provides an overview of modern advances in representation theory from a geometric standpoint. The techniques developed are quite general and can be applied to other areas such as quantum groups, affine Lie groups, and quantum field theory.

Geometric Representation Theory and Gauge Theory

Geometric Representation Theory and Gauge Theory PDF Author: Alexander Braverman
Publisher: Springer Nature
ISBN: 303026856X
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
This book offers a review of the vibrant areas of geometric representation theory and gauge theory, which are characterized by a merging of traditional techniques in representation theory with the use of powerful tools from algebraic geometry, and with strong inputs from physics. The notes are based on lectures delivered at the CIME school "Geometric Representation Theory and Gauge Theory" held in Cetraro, Italy, in June 2018. They comprise three contributions, due to Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Braverman and Finkelberg’s notes review the mathematical theory of the Coulomb branch of 3D N=4 quantum gauge theories. The purpose of Negut’s notes is to study moduli spaces of sheaves on a surface, as well as Hecke correspondences between them. Oblomkov's notes concern matrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration for PhD students and researchers.

Algebraic Combinatorics and Coinvariant Spaces

Algebraic Combinatorics and Coinvariant Spaces PDF Author: Francois Bergeron
Publisher: CRC Press
ISBN: 1439865078
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and

Frobenius Splitting Methods in Geometry and Representation Theory

Frobenius Splitting Methods in Geometry and Representation Theory PDF Author: Michel Brion
Publisher: Springer Science & Business Media
ISBN: 0817644059
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups PDF Author: Toshiaki Shoji
Publisher: American Mathematical Society(RI)
ISBN:
Category : Computers
Languages : en
Pages : 514

Get Book Here

Book Description
A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.

Algebraic and Analytic Methods in Representation Theory

Algebraic and Analytic Methods in Representation Theory PDF Author:
Publisher: Elsevier
ISBN: 0080526950
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field

D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory PDF Author: Ryoshi Hotta
Publisher: Springer Science & Business Media
ISBN: 081764363X
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

Introduction to Representation Theory

Introduction to Representation Theory PDF Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Geometry of Moduli Spaces and Representation Theory

Geometry of Moduli Spaces and Representation Theory PDF Author: Roman Bezrukavnikov
Publisher: American Mathematical Soc.
ISBN: 1470435748
Category : Mathematics
Languages : en
Pages : 449

Get Book Here

Book Description
This book is based on lectures given at the Graduate Summer School of the 2015 Park City Mathematics Institute program “Geometry of moduli spaces and representation theory”, and is devoted to several interrelated topics in algebraic geometry, topology of algebraic varieties, and representation theory. Geometric representation theory is a young but fast developing research area at the intersection of these subjects. An early profound achievement was the famous conjecture by Kazhdan–Lusztig about characters of highest weight modules over a complex semi-simple Lie algebra, and its subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remarkable features of this proof have inspired much of subsequent development: intricate algebraic data turned out to be encoded in topological invariants of singular geometric spaces, while proving this fact required deep general theorems from algebraic geometry. Another focus of the program was enumerative algebraic geometry. Recent progress showed the role of Lie theoretic structures in problems such as calculation of quantum cohomology, K-theory, etc. Although the motivation and technical background of these constructions is quite different from that of geometric Langlands duality, both theories deal with topological invariants of moduli spaces of maps from a target of complex dimension one. Thus they are at least heuristically related, while several recent works indicate possible strong technical connections. The main goal of this collection of notes is to provide young researchers and experts alike with an introduction to these areas of active research and promote interaction between the two related directions.