Author: Joseph B. Bernstein
Publisher: John Wiley & Sons
ISBN: 1394210930
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability. Reliability Prediction for Microelectronics meets this need with a cluster of tools built around principles of reliability physics and the concept of remaining useful life (RUL). It takes as its core subject the ‘physics of failure’, combining a thorough understanding of conventional approaches to reliability evaluation with a keen knowledge of their blind spots. It equips engineers and researchers with the capacity to overcome decades of errant reliability physics and place their work on a sound engineering footing. Reliability Prediction for Microelectronics readers will also find: Focus on the tools required to perform reliability assessments in real operating conditions Detailed discussion of topics including failure foundation, reliability testing, acceleration factor calculation, and more New multi-physics of failure on DSM technologies, including TDDB, EM, HCI, and BTI Reliability Prediction for Microelectronics is ideal for reliability and quality engineers, design engineers, and advanced engineering students looking to understand this crucial area of product design and testing.
Reliability Prediction for Microelectronics
Author: Joseph B. Bernstein
Publisher: John Wiley & Sons
ISBN: 1394210930
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability. Reliability Prediction for Microelectronics meets this need with a cluster of tools built around principles of reliability physics and the concept of remaining useful life (RUL). It takes as its core subject the ‘physics of failure’, combining a thorough understanding of conventional approaches to reliability evaluation with a keen knowledge of their blind spots. It equips engineers and researchers with the capacity to overcome decades of errant reliability physics and place their work on a sound engineering footing. Reliability Prediction for Microelectronics readers will also find: Focus on the tools required to perform reliability assessments in real operating conditions Detailed discussion of topics including failure foundation, reliability testing, acceleration factor calculation, and more New multi-physics of failure on DSM technologies, including TDDB, EM, HCI, and BTI Reliability Prediction for Microelectronics is ideal for reliability and quality engineers, design engineers, and advanced engineering students looking to understand this crucial area of product design and testing.
Publisher: John Wiley & Sons
ISBN: 1394210930
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability. Reliability Prediction for Microelectronics meets this need with a cluster of tools built around principles of reliability physics and the concept of remaining useful life (RUL). It takes as its core subject the ‘physics of failure’, combining a thorough understanding of conventional approaches to reliability evaluation with a keen knowledge of their blind spots. It equips engineers and researchers with the capacity to overcome decades of errant reliability physics and place their work on a sound engineering footing. Reliability Prediction for Microelectronics readers will also find: Focus on the tools required to perform reliability assessments in real operating conditions Detailed discussion of topics including failure foundation, reliability testing, acceleration factor calculation, and more New multi-physics of failure on DSM technologies, including TDDB, EM, HCI, and BTI Reliability Prediction for Microelectronics is ideal for reliability and quality engineers, design engineers, and advanced engineering students looking to understand this crucial area of product design and testing.
Reliability Prediction from Burn-In Data Fit to Reliability Models
Author: Joseph Bernstein
Publisher: Academic Press
ISBN: 0128008199
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This work will educate chip and system designers on a method for accurately predicting circuit and system reliability in order to estimate failures that will occur in the field as a function of operating conditions at the chip level. This book will combine the knowledge taught in many reliability publications and illustrate how to use the knowledge presented by the semiconductor manufacturing companies in combination with the HTOL end-of-life testing that is currently performed by the chip suppliers as part of their standard qualification procedure and make accurate reliability predictions. This book will allow chip designers to predict FIT and DPPM values as a function of operating conditions and chip temperature so that users ultimately will have control of reliability in their design so the reliability and performance will be considered concurrently with their design. - The ability to include reliability calculations and test results in their product design - The ability to use reliability data provided to them by their suppliers to make meaningful reliability predictions - Have accurate failure rate calculations for calculating warrantee period replacement costs
Publisher: Academic Press
ISBN: 0128008199
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This work will educate chip and system designers on a method for accurately predicting circuit and system reliability in order to estimate failures that will occur in the field as a function of operating conditions at the chip level. This book will combine the knowledge taught in many reliability publications and illustrate how to use the knowledge presented by the semiconductor manufacturing companies in combination with the HTOL end-of-life testing that is currently performed by the chip suppliers as part of their standard qualification procedure and make accurate reliability predictions. This book will allow chip designers to predict FIT and DPPM values as a function of operating conditions and chip temperature so that users ultimately will have control of reliability in their design so the reliability and performance will be considered concurrently with their design. - The ability to include reliability calculations and test results in their product design - The ability to use reliability data provided to them by their suppliers to make meaningful reliability predictions - Have accurate failure rate calculations for calculating warrantee period replacement costs
Reliability Prediction and Testing Textbook
Author: Lev M. Klyatis
Publisher: John Wiley & Sons
ISBN: 1119411939
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
This textbook reviews the methodologies of reliability prediction as currently used in industries such as electronics, automotive, aircraft, aerospace, off-highway, farm machinery, and others. It then discusses why these are not successful; and, presents methods developed by the authors for obtaining accurate information for successful prediction. The approach is founded on approaches that accurately duplicate the real world use of the product. Their approach is based on two fundamental components needed for successful reliability prediction; first, the methodology necessary; and, second, use of accelerated reliability and durability testing as a source of the necessary data. Applicable to all areas of engineering, this textbook details the newest techniques and tools to achieve successful reliabilityprediction and testing. It demonstrates practical examples of the implementation of the approaches described. This book is a tool for engineers, managers, researchers, in industry, teachers, and students. The reader will learn the importance of the interactions of the influencing factors and the interconnections of safety and human factors in product prediction and testing.
Publisher: John Wiley & Sons
ISBN: 1119411939
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
This textbook reviews the methodologies of reliability prediction as currently used in industries such as electronics, automotive, aircraft, aerospace, off-highway, farm machinery, and others. It then discusses why these are not successful; and, presents methods developed by the authors for obtaining accurate information for successful prediction. The approach is founded on approaches that accurately duplicate the real world use of the product. Their approach is based on two fundamental components needed for successful reliability prediction; first, the methodology necessary; and, second, use of accelerated reliability and durability testing as a source of the necessary data. Applicable to all areas of engineering, this textbook details the newest techniques and tools to achieve successful reliabilityprediction and testing. It demonstrates practical examples of the implementation of the approaches described. This book is a tool for engineers, managers, researchers, in industry, teachers, and students. The reader will learn the importance of the interactions of the influencing factors and the interconnections of safety and human factors in product prediction and testing.
Solder Joint Reliability Prediction for Multiple Environments
Author: Andrew E. Perkins
Publisher: Springer Science & Business Media
ISBN: 0387793941
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Solder Joint Reliability Prediction for Multiple Environments will provide industry engineers, graduate students and academic researchers, and reliability experts with insights and useful tools for evaluating solder joint reliability of ceramic area array electronic packages under multiple environments. The material presented here is not limited to ceramic area array packages only, it can also be used as a methodology for relating numerical simulations and experimental data into an easy-to-use equation that captures the essential information needed to predict solder joint reliability. Such a methodology is often needed to relate complex information in a simple manner to managers and non-experts in solder joint who work with computer server applications as well as for harsh environments such as those found in the defense, space, and automotive industries.
Publisher: Springer Science & Business Media
ISBN: 0387793941
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Solder Joint Reliability Prediction for Multiple Environments will provide industry engineers, graduate students and academic researchers, and reliability experts with insights and useful tools for evaluating solder joint reliability of ceramic area array electronic packages under multiple environments. The material presented here is not limited to ceramic area array packages only, it can also be used as a methodology for relating numerical simulations and experimental data into an easy-to-use equation that captures the essential information needed to predict solder joint reliability. Such a methodology is often needed to relate complex information in a simple manner to managers and non-experts in solder joint who work with computer server applications as well as for harsh environments such as those found in the defense, space, and automotive industries.
Reliability and Quality in Microelectronic Manufacturing
Author: A. Christou
Publisher: RIAC
ISBN: 1933904151
Category : Microelectronics
Languages : en
Pages : 410
Book Description
Publisher: RIAC
ISBN: 1933904151
Category : Microelectronics
Languages : en
Pages : 410
Book Description
Semiconductor Device Reliability
Author: A. Christou
Publisher: Springer Science & Business Media
ISBN: 9400924828
Category : Technology & Engineering
Languages : en
Pages : 571
Book Description
This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.
Publisher: Springer Science & Business Media
ISBN: 9400924828
Category : Technology & Engineering
Languages : en
Pages : 571
Book Description
This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.
Reliability Growth
Author: Panel on Reliability Growth Methods for Defense Systems
Publisher: National Academy Press
ISBN: 9780309314749
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.
Publisher: National Academy Press
ISBN: 9780309314749
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.
Recent Advances in Microelectronics Reliability
Author: Willem Dirk van Driel
Publisher: Springer Nature
ISBN: 3031593618
Category :
Languages : en
Pages : 405
Book Description
Publisher: Springer Nature
ISBN: 3031593618
Category :
Languages : en
Pages : 405
Book Description
Reliability Prediction for Microelectronics
Author: Joseph B. Bernstein
Publisher: John Wiley & Sons
ISBN: 1394210957
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability. Reliability Prediction for Microelectronics meets this need with a cluster of tools built around principles of reliability physics and the concept of remaining useful life (RUL). It takes as its core subject the ‘physics of failure’, combining a thorough understanding of conventional approaches to reliability evaluation with a keen knowledge of their blind spots. It equips engineers and researchers with the capacity to overcome decades of errant reliability physics and place their work on a sound engineering footing. Reliability Prediction for Microelectronics readers will also find: Focus on the tools required to perform reliability assessments in real operating conditions Detailed discussion of topics including failure foundation, reliability testing, acceleration factor calculation, and more New multi-physics of failure on DSM technologies, including TDDB, EM, HCI, and BTI Reliability Prediction for Microelectronics is ideal for reliability and quality engineers, design engineers, and advanced engineering students looking to understand this crucial area of product design and testing.
Publisher: John Wiley & Sons
ISBN: 1394210957
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability. Reliability Prediction for Microelectronics meets this need with a cluster of tools built around principles of reliability physics and the concept of remaining useful life (RUL). It takes as its core subject the ‘physics of failure’, combining a thorough understanding of conventional approaches to reliability evaluation with a keen knowledge of their blind spots. It equips engineers and researchers with the capacity to overcome decades of errant reliability physics and place their work on a sound engineering footing. Reliability Prediction for Microelectronics readers will also find: Focus on the tools required to perform reliability assessments in real operating conditions Detailed discussion of topics including failure foundation, reliability testing, acceleration factor calculation, and more New multi-physics of failure on DSM technologies, including TDDB, EM, HCI, and BTI Reliability Prediction for Microelectronics is ideal for reliability and quality engineers, design engineers, and advanced engineering students looking to understand this crucial area of product design and testing.
Physics-of-Failure Based Handbook of Microelectronic Systems
Author: Shahrzad Salemi
Publisher: RIAC
ISBN: 1933904291
Category : Electronic apparatus and appliances
Languages : en
Pages : 271
Book Description
Publisher: RIAC
ISBN: 1933904291
Category : Electronic apparatus and appliances
Languages : en
Pages : 271
Book Description