Relevance of the U.S. National Ignition Facility for Driver and Target Options to Next-step Inertial Fusion Test Facilities

Relevance of the U.S. National Ignition Facility for Driver and Target Options to Next-step Inertial Fusion Test Facilities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
Achievement of inertial fusion ignition and energy gain in the proposed U.S. National Ignition Facility is a prerequisite for decisions to build next-step U.S. inertial fusion facilities for either high yield or high pulse-rate. There are a variety of target and driver options for such next-step inertial fusion test facilities, and this paper discusses possible ways that the NIF, using a 1.8 MJ glass laser in both direct and indirect-drive configurations, can provide target physics data relevant to several next-step facility options. Next step facility options include the Engineering Test Facility (ETF), which needs several-Hz pulse-rates for testing relevant to Inertial Fusion Energy (IFE) development. An option for high yield, called the Laboratory Microfusion Facility (LMF), does not require such high pulse-rates, but may still benefit from driver technologies capable of much higher shot rates than possible with glass lasers. A high-pulse-rate driver could also be used for a combined ETF/LMF facility, driving multiple target chambers with a common driver. Driver technologies that could support high-pulse rates for next-step options include heavy-ion and light-ion accelerators, diode-pumped solid-state lasers (DPSSL), and krypton-flouride gas lasers. The NIF could be used to provide important data for IFE in generic areas of target chamber damage and materials responses, neutron activation and heating, tritium recovery and safety, and in performance tests of prototypical IFE targets and injection systems. In the study of ignition in both direct and indirect-drive, the NIF would explore generic ICF fuel capsule implosion physics common to all driver and target options for next-step facilities. In the following, we point out specific ways in which the NIF could be used to study target physics specifically relevant to the above-mentioned driver options for such next-step facilities, as well as how the NIF laser system itself could be relevant to the DPSSL option.

Relevance of the U.S. National Ignition Facility for Driver and Target Options to Next-step Inertial Fusion Test Facilities

Relevance of the U.S. National Ignition Facility for Driver and Target Options to Next-step Inertial Fusion Test Facilities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
Achievement of inertial fusion ignition and energy gain in the proposed U.S. National Ignition Facility is a prerequisite for decisions to build next-step U.S. inertial fusion facilities for either high yield or high pulse-rate. There are a variety of target and driver options for such next-step inertial fusion test facilities, and this paper discusses possible ways that the NIF, using a 1.8 MJ glass laser in both direct and indirect-drive configurations, can provide target physics data relevant to several next-step facility options. Next step facility options include the Engineering Test Facility (ETF), which needs several-Hz pulse-rates for testing relevant to Inertial Fusion Energy (IFE) development. An option for high yield, called the Laboratory Microfusion Facility (LMF), does not require such high pulse-rates, but may still benefit from driver technologies capable of much higher shot rates than possible with glass lasers. A high-pulse-rate driver could also be used for a combined ETF/LMF facility, driving multiple target chambers with a common driver. Driver technologies that could support high-pulse rates for next-step options include heavy-ion and light-ion accelerators, diode-pumped solid-state lasers (DPSSL), and krypton-flouride gas lasers. The NIF could be used to provide important data for IFE in generic areas of target chamber damage and materials responses, neutron activation and heating, tritium recovery and safety, and in performance tests of prototypical IFE targets and injection systems. In the study of ignition in both direct and indirect-drive, the NIF would explore generic ICF fuel capsule implosion physics common to all driver and target options for next-step facilities. In the following, we point out specific ways in which the NIF could be used to study target physics specifically relevant to the above-mentioned driver options for such next-step facilities, as well as how the NIF laser system itself could be relevant to the DPSSL option.

Assessment of Inertial Confinement Fusion Targets

Assessment of Inertial Confinement Fusion Targets PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309270626
Category : Science
Languages : en
Pages : 119

Get Book Here

Book Description
In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, particularly in the area of ICF targets and nonproliferation. Thus, the Panel on the Assessment of Inertial Confinement Fusion Targets ("the panel") was assembled, composed of experts able to access the needed information. The panel was charged with advising the Committee on the Prospects for Inertial Confinement Fusion Energy Systems on these issues, both by internal discussion and by this unclassified report. A Panel on Fusion Target Physics ("the panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Committee") and will prepare a report that describes the R&D challenges to providing suitable targets, on the basis of parameters established and provided to the Panel by the Committee. The Panel on Fusion Target Physics will prepare a report that will assess the current performance of fusion targets associated with various ICF concepts in order to understand: 1. The spectrum output; 2. The illumination geometry; 3. The high-gain geometry; and 4. The robustness of the target design. The panel addressed the potential impacts of the use and development of current concepts for Inertial Fusion Energy on the proliferation of nuclear weapons information and technology, as appropriate. The Panel examined technology options, but does not provide recommendations specific to any currently operating or proposed ICF facility.

An Assessment of the Prospects for Inertial Fusion Energy

An Assessment of the Prospects for Inertial Fusion Energy PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309272246
Category : Science
Languages : en
Pages : 247

Get Book Here

Book Description
The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Utility of the US National Ignition Facility for Development of Inertial Fusion Energy

Utility of the US National Ignition Facility for Development of Inertial Fusion Energy PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
The demonstration of inertial fusion ignition and gain in the proposed US National Ignition Facility (NIF), along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF), a facility for integrated testing of the technologies needed for inertial fusion-energy (IFE) power plants. A workshop was convened at the University of California, Berkeley on February 22--24, 1994, attended by 61 participants from 17 US organizations, to identify possible NIF experiments relevant to IFE. We considered experiments in four IFE areas: Target physics, target chamber dynamics, fusion power ethnology, and target systems, as defined in the following sections.

Laser Interaction and Related Plasma Phenomena

Laser Interaction and Related Plasma Phenomena PDF Author: S. Nakai
Publisher: American Institute of Physics
ISBN: 9781563964459
Category : Technology & Engineering
Languages : en
Pages : 792

Get Book Here

Book Description
Papers from the April 1995 conference (formerly called a "workshop") are contained in two volumes. The first volume (623-9) comprises contributions arranged in sections on ICF programs and energy drivers; critical elements for ignition--target experiment, physics, and design; laser-matter interaction physics; and high intensities, short pulse interactions. The second volume (624-7) begins with papers on optical technologies and various kinds of lasers--free electron, LD and LD pumped, gas, nuclear pumped, and short pulse. Following these are sections on particle beams--light and heavy ion beam fusions; and applications of laser and plasma. Edward Teller Award lectures complete the proceedings. Not indexed by subject (contains only an author "index"). Annotation copyrighted by Book News, Inc., Portland, OR

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 508

Get Book Here

Book Description


The Role of the National Ignition Facility in the Development of Inertial Fusion Energy

The Role of the National Ignition Facility in the Development of Inertial Fusion Energy PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-[mu]m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design ... ; (2) to provide an above-ground simulation capability for nuclear weapon effects ... ; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

Review of the Department of Energy's Inertial Confinement Fusion Program

Review of the Department of Energy's Inertial Confinement Fusion Program PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 9780309057783
Category : Science
Languages : en
Pages : 68

Get Book Here

Book Description


The National Ignition Facility (NIF) A Path to Fusion Energy

The National Ignition Facility (NIF) A Path to Fusion Energy PDF Author: E. Moses
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description
Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC).

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.