Author: Remi Joel Hakim
Publisher: World Scientific
ISBN: 9814464120
Category : Science
Languages : en
Pages : 567
Book Description
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statistical mechanics. This will interest specialists of various fields, especially the (classical and quantum) plasma physics. However, quantum physics — to which a major part is devoted — will be of more interest since, not only it applies to quantum plasma physics, but also to nuclear matter and to strong magnetic field, cosmology, etc. Although the domain of gauge theory is not covered in this book, the topic is not completely forgotten, in particular in the domain of plasma physics. This book is particularly readable for graduate students and a fortiori to young researchers for whom it offers methods and also appropriate schemes to deal with the current problems encountered in astrophysics, in strong magnetic, in nuclear or even in high energy physics.
Introduction To Relativistic Statistical Mechanics: Classical And Quantum
Author: Remi Joel Hakim
Publisher: World Scientific
ISBN: 9814464120
Category : Science
Languages : en
Pages : 567
Book Description
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statistical mechanics. This will interest specialists of various fields, especially the (classical and quantum) plasma physics. However, quantum physics — to which a major part is devoted — will be of more interest since, not only it applies to quantum plasma physics, but also to nuclear matter and to strong magnetic field, cosmology, etc. Although the domain of gauge theory is not covered in this book, the topic is not completely forgotten, in particular in the domain of plasma physics. This book is particularly readable for graduate students and a fortiori to young researchers for whom it offers methods and also appropriate schemes to deal with the current problems encountered in astrophysics, in strong magnetic, in nuclear or even in high energy physics.
Publisher: World Scientific
ISBN: 9814464120
Category : Science
Languages : en
Pages : 567
Book Description
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statistical mechanics. This will interest specialists of various fields, especially the (classical and quantum) plasma physics. However, quantum physics — to which a major part is devoted — will be of more interest since, not only it applies to quantum plasma physics, but also to nuclear matter and to strong magnetic field, cosmology, etc. Although the domain of gauge theory is not covered in this book, the topic is not completely forgotten, in particular in the domain of plasma physics. This book is particularly readable for graduate students and a fortiori to young researchers for whom it offers methods and also appropriate schemes to deal with the current problems encountered in astrophysics, in strong magnetic, in nuclear or even in high energy physics.
Relativistic Many-Body Theory and Statistical Mechanics
Author: Lawrence P. Horwitz
Publisher: Morgan & Claypool Publishers
ISBN: 1681749475
Category : Science
Languages : en
Pages : 145
Book Description
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.
Publisher: Morgan & Claypool Publishers
ISBN: 1681749475
Category : Science
Languages : en
Pages : 145
Book Description
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.
Introduction to the Basic Concepts of Modern Physics
Author: Carlo Maria Becchi
Publisher: Springer Science & Business Media
ISBN: 8847016169
Category : Science
Languages : en
Pages : 185
Book Description
These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given.
Publisher: Springer Science & Business Media
ISBN: 8847016169
Category : Science
Languages : en
Pages : 185
Book Description
These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given.
Modern Classical Physics
Author: Kip S. Thorne
Publisher: Princeton University Press
ISBN: 0691159025
Category : Science
Languages : en
Pages : 1551
Book Description
A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available
Publisher: Princeton University Press
ISBN: 0691159025
Category : Science
Languages : en
Pages : 1551
Book Description
A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available
RELATIVITY AND STATISTICAL PHYSICS
Author: PROF Ms. DWIVEDI MAM
Publisher: Ram Prasad Publications(R.P.H.)
ISBN:
Category : Science
Languages : en
Pages : 214
Book Description
1. Reference systems, inertial frames, Galilean invariance and conservation laws, propagation of light, Michelson-Morley experiment; search for ether. 2. Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition theorem, variation of mass with velocity, mass-energy equivalence, particle with a zero rest mass. 3. The statistical basis of thermodynamics : Probability and thermodynamic probability, principle of equal a prior probabilities, probability distribution and its narrowing with increase in number of particles. The expressions for average properties. Constraints; accessible and inaccessible states, distribution of particles with a given total energy into a discrete set of energy states. 4. Some universal laws : The ji-space representation, division of i-space into energy sheets and into phase cells of arbitrary size, applications to one dimensional harmonic oscillator and free particles. Equilibrium before two systems in thermal contact, bridge with macroscopic physics. Probability and entropy, Boltzmann entropy relation. Statistical interpretation of second law of thermodynamics. Boltzmann canonical distribution law and its applications; rigorous form of equipartition of energy. Maxwellian distribution of speeds in an ideal gas : Distribution of speeds and of velocities, experimental verification, distinction between mean, r.m.s. and most probable speed values. Doppler broadening of spectral lines. 5. Transition to quantum statistics : ‘h’ as a natural constant and its implications, cases of particle in a one-dimensional box and one-dimensional harmonic oscillator, Indistinguishability of particles and its consequences, Bose-Einstein, and Fermi-Dirac distributions, photons in black body chamber, free electrons in a metal, Fermi level and Fermi energy.
Publisher: Ram Prasad Publications(R.P.H.)
ISBN:
Category : Science
Languages : en
Pages : 214
Book Description
1. Reference systems, inertial frames, Galilean invariance and conservation laws, propagation of light, Michelson-Morley experiment; search for ether. 2. Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition theorem, variation of mass with velocity, mass-energy equivalence, particle with a zero rest mass. 3. The statistical basis of thermodynamics : Probability and thermodynamic probability, principle of equal a prior probabilities, probability distribution and its narrowing with increase in number of particles. The expressions for average properties. Constraints; accessible and inaccessible states, distribution of particles with a given total energy into a discrete set of energy states. 4. Some universal laws : The ji-space representation, division of i-space into energy sheets and into phase cells of arbitrary size, applications to one dimensional harmonic oscillator and free particles. Equilibrium before two systems in thermal contact, bridge with macroscopic physics. Probability and entropy, Boltzmann entropy relation. Statistical interpretation of second law of thermodynamics. Boltzmann canonical distribution law and its applications; rigorous form of equipartition of energy. Maxwellian distribution of speeds in an ideal gas : Distribution of speeds and of velocities, experimental verification, distinction between mean, r.m.s. and most probable speed values. Doppler broadening of spectral lines. 5. Transition to quantum statistics : ‘h’ as a natural constant and its implications, cases of particle in a one-dimensional box and one-dimensional harmonic oscillator, Indistinguishability of particles and its consequences, Bose-Einstein, and Fermi-Dirac distributions, photons in black body chamber, free electrons in a metal, Fermi level and Fermi energy.
Statistical Physics
Author: Kip S. Thorne
Publisher: Princeton University Press
ISBN: 0691206120
Category : Science
Languages : en
Pages : 406
Book Description
"Kip Thorne and Roger Blandford's monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Statistical Physics is an essential introduction that is different from others on the subject because of its unique approach, which is coordinate-independent and geometric; embraces and elucidates the close quantum-classical connection and the relativistic and Newtonian domains; and demonstrates the power of statistical techniques--particularly statistical mechanics--by presenting applications not only to the usual kinds of things, such as gases, liquids, solids, and magnetic materials, but also to a much wider range of phenomena, including black holes, the universe, information and communication, and signal processing amid noise. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional "Track 2" sections make this an ideal book for a one-quarter, half-semester, or full-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology." --Amazon.com.
Publisher: Princeton University Press
ISBN: 0691206120
Category : Science
Languages : en
Pages : 406
Book Description
"Kip Thorne and Roger Blandford's monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Statistical Physics is an essential introduction that is different from others on the subject because of its unique approach, which is coordinate-independent and geometric; embraces and elucidates the close quantum-classical connection and the relativistic and Newtonian domains; and demonstrates the power of statistical techniques--particularly statistical mechanics--by presenting applications not only to the usual kinds of things, such as gases, liquids, solids, and magnetic materials, but also to a much wider range of phenomena, including black holes, the universe, information and communication, and signal processing amid noise. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional "Track 2" sections make this an ideal book for a one-quarter, half-semester, or full-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology." --Amazon.com.
Special Relativity, Electrodynamics, and General Relativity
Author: John B. Kogut
Publisher: Academic Press
ISBN: 0128137215
Category : Science
Languages : en
Pages : 456
Book Description
Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO
Publisher: Academic Press
ISBN: 0128137215
Category : Science
Languages : en
Pages : 456
Book Description
Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO
Analytical Mechanics for Relativity and Quantum Mechanics
Author: Oliver Johns
Publisher: OUP Oxford
ISBN: 0191001627
Category : Science
Languages : en
Pages : 653
Book Description
An innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It presents classical mechanics in a way designed to assist the student's transition to quantum theory.
Publisher: OUP Oxford
ISBN: 0191001627
Category : Science
Languages : en
Pages : 653
Book Description
An innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It presents classical mechanics in a way designed to assist the student's transition to quantum theory.
Equilibrium Statistical Mechanics
Author: E. Atlee Jackson
Publisher: Courier Corporation
ISBN: 0486149390
Category : Science
Languages : en
Pages : 276
Book Description
Key features include an elementary introduction to probability, distribution functions, and uncertainty; a review of the concept and significance of energy; and various models of physical systems. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486149390
Category : Science
Languages : en
Pages : 276
Book Description
Key features include an elementary introduction to probability, distribution functions, and uncertainty; a review of the concept and significance of energy; and various models of physical systems. 1968 edition.
Statistical Physics
Author: A.M. Guenault
Publisher: Springer Science & Business Media
ISBN: 1402059744
Category : Science
Languages : en
Pages : 206
Book Description
In this revised and enlarged second edition, Tony Guénault provides a clear and refreshingly readable introduction to statistical physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. The book adopts a straightforward quantum approach to statistical averaging from the outset. The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.
Publisher: Springer Science & Business Media
ISBN: 1402059744
Category : Science
Languages : en
Pages : 206
Book Description
In this revised and enlarged second edition, Tony Guénault provides a clear and refreshingly readable introduction to statistical physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. The book adopts a straightforward quantum approach to statistical averaging from the outset. The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.