Learning with Kernels

Learning with Kernels PDF Author: Bernhard Scholkopf
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645

Get Book Here

Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Learning with Kernels

Learning with Kernels PDF Author: Bernhard Scholkopf
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645

Get Book Here

Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Kernel Methods in Computational Biology

Kernel Methods in Computational Biology PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262195096
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
A detailed overview of current research in kernel methods and their application to computational biology.

Regularization, Optimization, Kernels, and Support Vector Machines

Regularization, Optimization, Kernels, and Support Vector Machines PDF Author: Johan A.K. Suykens
Publisher: CRC Press
ISBN: 1482241390
Category : Computers
Languages : en
Pages : 528

Get Book Here

Book Description
Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis PDF Author: John Shawe-Taylor
Publisher: Cambridge University Press
ISBN: 9780521813976
Category : Computers
Languages : en
Pages : 520

Get Book Here

Book Description
Publisher Description

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning PDF Author: Carl Edward Rasmussen
Publisher: MIT Press
ISBN: 026218253X
Category : Computers
Languages : en
Pages : 266

Get Book Here

Book Description
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Encyclopedia of Algorithms

Encyclopedia of Algorithms PDF Author: Ming-Yang Kao
Publisher: Springer Science & Business Media
ISBN: 0387307702
Category : Computers
Languages : en
Pages : 1200

Get Book Here

Book Description
One of Springer’s renowned Major Reference Works, this awesome achievement provides a comprehensive set of solutions to important algorithmic problems for students and researchers interested in quickly locating useful information. This first edition of the reference focuses on high-impact solutions from the most recent decade, while later editions will widen the scope of the work. All entries have been written by experts, while links to Internet sites that outline their research work are provided. The entries have all been peer-reviewed. This defining reference is published both in print and on line.

Efficient Learning Machines

Efficient Learning Machines PDF Author: Mariette Awad
Publisher: Apress
ISBN: 1430259906
Category : Computers
Languages : en
Pages : 263

Get Book Here

Book Description
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Machine Learning Refined

Machine Learning Refined PDF Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597

Get Book Here

Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Learning Kernel Classifiers

Learning Kernel Classifiers PDF Author: Ralf Herbrich
Publisher: MIT Press
ISBN: 9780262263047
Category : Computers
Languages : en
Pages : 402

Get Book Here

Book Description
An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.

Kernel Methods and Machine Learning

Kernel Methods and Machine Learning PDF Author: S. Y. Kung
Publisher: Cambridge University Press
ISBN: 1139867636
Category : Computers
Languages : en
Pages : 617

Get Book Here

Book Description
Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.