Author: Friedrich Kasch
Publisher: Springer Science & Business Media
ISBN: 3764399902
Category : Mathematics
Languages : en
Pages : 174
Book Description
Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the ?rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules.
Regularity and Substructures of Hom
Author: Friedrich Kasch
Publisher: Springer Science & Business Media
ISBN: 3764399902
Category : Mathematics
Languages : en
Pages : 174
Book Description
Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the ?rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules.
Publisher: Springer Science & Business Media
ISBN: 3764399902
Category : Mathematics
Languages : en
Pages : 174
Book Description
Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the ?rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules.
Ring and Module Theory
Author: Toma Albu
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
Abelian Groups
Author: László Fuchs
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Flag-transitive Steiner Designs
Author: Michael Huber
Publisher: Springer Science & Business Media
ISBN: 303460002X
Category : Mathematics
Languages : en
Pages : 128
Book Description
The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein’s Erlangen program(1872).Inaddition,especiallyfor?nitestructures,importantapplications to practical topics such as design theory, coding theory and cryptography have made the ?eld even more attractive. The subject matter of this research monograph is the study and class- cation of ?ag-transitive Steiner designs, that is, combinatorial t-(v,k,1) designs which admit a group of automorphisms acting transitively on incident point-block pairs. As a consequence of the classi?cation of the ?nite simple groups, it has been possible in recent years to characterize Steiner t-designs, mainly for t=2,adm- ting groups of automorphisms with su?ciently strong symmetry properties. For Steiner 2-designs, arguably the most general results have been the classi?cation of all point 2-transitive Steiner 2-designs in 1985 by W. M. Kantor, and the almost complete determination of all ?ag-transitive Steiner 2-designs announced in 1990 byF.Buekenhout,A.Delandtsheer,J.Doyen,P.B.Kleidman,M.W.Liebeck, and J. Saxl. However, despite the classi?cation of the ?nite simple groups, for Steiner t-designs witht> 2 most of the characterizations of these types have remained long-standing challenging problems. Speci?cally, the determination of all ?- transitive Steiner t-designs with 3? t? 6 has been of particular interest and object of research for more than 40 years.
Publisher: Springer Science & Business Media
ISBN: 303460002X
Category : Mathematics
Languages : en
Pages : 128
Book Description
The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein’s Erlangen program(1872).Inaddition,especiallyfor?nitestructures,importantapplications to practical topics such as design theory, coding theory and cryptography have made the ?eld even more attractive. The subject matter of this research monograph is the study and class- cation of ?ag-transitive Steiner designs, that is, combinatorial t-(v,k,1) designs which admit a group of automorphisms acting transitively on incident point-block pairs. As a consequence of the classi?cation of the ?nite simple groups, it has been possible in recent years to characterize Steiner t-designs, mainly for t=2,adm- ting groups of automorphisms with su?ciently strong symmetry properties. For Steiner 2-designs, arguably the most general results have been the classi?cation of all point 2-transitive Steiner 2-designs in 1985 by W. M. Kantor, and the almost complete determination of all ?ag-transitive Steiner 2-designs announced in 1990 byF.Buekenhout,A.Delandtsheer,J.Doyen,P.B.Kleidman,M.W.Liebeck, and J. Saxl. However, despite the classi?cation of the ?nite simple groups, for Steiner t-designs witht> 2 most of the characterizations of these types have remained long-standing challenging problems. Speci?cally, the determination of all ?- transitive Steiner t-designs with 3? t? 6 has been of particular interest and object of research for more than 40 years.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 756
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 756
Book Description
Material Substructures in Complex Bodies
Author: Gianfranco Capriz
Publisher: Elsevier
ISBN: 0080445357
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Stringent industrial requirements of sophisticated performances and of circumstantial control for micro-devices or nanotechnology manufactures, and other types of machinery at multiple scales, can be satisfied often only by resort to or allowance for complex materials. The adjective 'complex' beckons to the fact that the substructure influences gross mechanical behaviour in a prominent way and interactions due to substructural changes are represented directly. The description of the mechanical behaviour of complex bodies proposes a wide class of challenging problems from macroscopic-to-nano-world. The collection of chapters composing this book aims to explore some aspects of these problems, proposing also new matter of discussion together with specific solutions. Contributors are Carlo Cercignani, Gianfranco Capriz, Pierre Degond, Antonio Fasano, Harley T. Johnson, Sukky Jun, Krishna Kannan, Wing Kam Liu, Alberto Mancini, Paolo Maria Mariano, Ingo Müller, Kumbakonan R. Rajagopal, Jan Jerzy Slawianowski. The book can be a useful tool for Scholars and PhD students addressing their research activity toward basic mathematical and physical problems accruing from the mechanics of materials.
Publisher: Elsevier
ISBN: 0080445357
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Stringent industrial requirements of sophisticated performances and of circumstantial control for micro-devices or nanotechnology manufactures, and other types of machinery at multiple scales, can be satisfied often only by resort to or allowance for complex materials. The adjective 'complex' beckons to the fact that the substructure influences gross mechanical behaviour in a prominent way and interactions due to substructural changes are represented directly. The description of the mechanical behaviour of complex bodies proposes a wide class of challenging problems from macroscopic-to-nano-world. The collection of chapters composing this book aims to explore some aspects of these problems, proposing also new matter of discussion together with specific solutions. Contributors are Carlo Cercignani, Gianfranco Capriz, Pierre Degond, Antonio Fasano, Harley T. Johnson, Sukky Jun, Krishna Kannan, Wing Kam Liu, Alberto Mancini, Paolo Maria Mariano, Ingo Müller, Kumbakonan R. Rajagopal, Jan Jerzy Slawianowski. The book can be a useful tool for Scholars and PhD students addressing their research activity toward basic mathematical and physical problems accruing from the mechanics of materials.
The British National Bibliography
Author: Arthur James Wells
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1922
Book Description
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1922
Book Description
Smarandache Near-Rings
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233667
Category : Mathematics
Languages : en
Pages : 201
Book Description
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
Publisher: Infinite Study
ISBN: 1931233667
Category : Mathematics
Languages : en
Pages : 201
Book Description
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27)
Author: Jon T. Pitts
Publisher: Princeton University Press
ISBN: 1400856450
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400856450
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Hodge Theory
Author: Eduardo Cattani
Publisher: Princeton University Press
ISBN: 0691161348
Category : Mathematics
Languages : en
Pages : 607
Book Description
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê Dũng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu.
Publisher: Princeton University Press
ISBN: 0691161348
Category : Mathematics
Languages : en
Pages : 607
Book Description
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê Dũng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu.