Recovering Scale in Relative Pose and Target Model Estimation Using Monocular Vision

Recovering Scale in Relative Pose and Target Model Estimation Using Monocular Vision PDF Author: Michael Tribou
Publisher:
ISBN:
Category :
Languages : en
Pages : 188

Get Book Here

Book Description
A combined relative pose and target object model estimation framework using a monocular camera as the primary feedback sensor has been designed and validated in a simulated robotic environment. The monocular camera is mounted on the end-effector of a robot manipulator and measures the image plane coordinates of a set of point features on a target workpiece object. Using this information, the relative position and orientation, as well as the geometry, of the target object are recovered recursively by a Kalman filter process. The Kalman filter facilitates the fusion of supplemental measurements from range sensors, with those gathered with the camera. This process allows the estimated system state to be accurate and recover the proper environment scale. Current approaches in the research areas of visual servoing control and mobile robotics are studied in the case where the target object feature point geometry is well-known prior to the beginning of the estimation. In this case, only the relative pose of target object frames is estimated over a sequence of frames from a single monocular camera. An observability analysis was carried out to identify the physical configurations of camera and target object for which the relative pose cannot be recovered by measuring only the camera image plane coordinates of the object point features. A popular extension to this is to concurrently estimate the target object model concurrently with the relative pose of the camera frame, a process known as Simultaneous Localization and Mapping (SLAM). The recursive framework was augmented to facilitate this larger estimation problem. The scale of the recovered solution is ambiguous using measurements from a single camera. A second observability analysis highlights more configurations for which the relative pose and target object model are unrecoverable from camera measurements alone. Instead, measurements which contain the global scale are required to obtain an accurate solution. A set of additional sensors are detailed, including range finders and additional cameras. Measurement models for each are given, which facilitate the fusion of this supplemental data with the original monocular camera image measurements. A complete framework is then derived to combine a set of such sensor measurements to recover an accurate relative pose and target object model estimate.

Recovering Scale in Relative Pose and Target Model Estimation Using Monocular Vision

Recovering Scale in Relative Pose and Target Model Estimation Using Monocular Vision PDF Author: Michael Tribou
Publisher:
ISBN:
Category :
Languages : en
Pages : 188

Get Book Here

Book Description
A combined relative pose and target object model estimation framework using a monocular camera as the primary feedback sensor has been designed and validated in a simulated robotic environment. The monocular camera is mounted on the end-effector of a robot manipulator and measures the image plane coordinates of a set of point features on a target workpiece object. Using this information, the relative position and orientation, as well as the geometry, of the target object are recovered recursively by a Kalman filter process. The Kalman filter facilitates the fusion of supplemental measurements from range sensors, with those gathered with the camera. This process allows the estimated system state to be accurate and recover the proper environment scale. Current approaches in the research areas of visual servoing control and mobile robotics are studied in the case where the target object feature point geometry is well-known prior to the beginning of the estimation. In this case, only the relative pose of target object frames is estimated over a sequence of frames from a single monocular camera. An observability analysis was carried out to identify the physical configurations of camera and target object for which the relative pose cannot be recovered by measuring only the camera image plane coordinates of the object point features. A popular extension to this is to concurrently estimate the target object model concurrently with the relative pose of the camera frame, a process known as Simultaneous Localization and Mapping (SLAM). The recursive framework was augmented to facilitate this larger estimation problem. The scale of the recovered solution is ambiguous using measurements from a single camera. A second observability analysis highlights more configurations for which the relative pose and target object model are unrecoverable from camera measurements alone. Instead, measurements which contain the global scale are required to obtain an accurate solution. A set of additional sensors are detailed, including range finders and additional cameras. Measurement models for each are given, which facilitate the fusion of this supplemental data with the original monocular camera image measurements. A complete framework is then derived to combine a set of such sensor measurements to recover an accurate relative pose and target object model estimate.

Monocular Pose and Shape Estimation of Moving Targets, for Autonomous Rendezvous and Docking

Monocular Pose and Shape Estimation of Moving Targets, for Autonomous Rendezvous and Docking PDF Author: Sean Augenstein
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 125

Get Book Here

Book Description
This thesis describes the design and implementation of an algorithm for tracking a moving (e.g., `tumbling') target. No a priori information about the target is assumed, and only a single camera is used. The motivation is to enable autonomous rendezvous, inspection, and docking by robots in remote environments, such as space and underwater. Tracking refers to the simultaneous estimation of both the target's 6DOF pose and 3D shape (in the form of a point cloud of recognizable features), a problem of the SLAM (`Simultaneous Localization and Mapping') and SFM (`Structure from Motion') research fields. This research extends SLAM/SFM to deal with non-communicative moving targets (rigid bodies) with unknown, arbitrary 6DOF motion and no a priori knowledge of mass properties, dynamics, shape, or appearance. Specifically, a hybrid algorithm for real-time frame-to-frame pose estimation and shape reconstruction is presented. The algorithm combines concepts from two existing approaches to pose tracking, Bayesian estimation methods and nonlinear optimization techniques, to achieve a real-time capable, feasible, smooth estimate of the relative pose between a robotic platform and a moving target. The rationale for a hybrid approach is explained, and an algorithm is presented. A specific implementation using a modified Rao-Blackwellized particle filter is described and tested. Field demonstrations were performed in conjunction with the Monterey Bay Aquarium Research Institute, using the camera-equipped Remotely Operated Vehicle (ROV) Ventana to observe, reconstruct, and track the pose of an underwater tethered target in Monterey Bay. Results are included which demonstrate the performance and viability of the hybrid approach.

Monocular Model-based 3D Tracking of Rigid Objects

Monocular Model-based 3D Tracking of Rigid Objects PDF Author: Vincent Lepetit
Publisher: Now Publishers Inc
ISBN: 9781933019031
Category : Computers
Languages : en
Pages : 108

Get Book Here

Book Description
Monocular Model-Based 3D Tracking of Rigid Objects reviews the different techniques and approaches that have been developed by industry and research.

Six Degrees of Freedom Estimation Using Monocular Vision and Moiré Patterns

Six Degrees of Freedom Estimation Using Monocular Vision and Moiré Patterns PDF Author: Glenn Paul Tournier
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description
We present the vision-based estimation of the position and orientation of an object using a single camera relative to a novel target that incorporates the use of moire patterns. The objective is to acquire the six degree of freedom estimation that is essential for the operation of vehicles in close proximity to other craft and landing platforms. A target contains markers to determine relative orientation and locate two sets of orthogonal moire patterns at two different frequencies. A camera is mounted on a small vehicle with the target in the field of view. An algorithm processes the images extracting the attitude and position information of the camera relative to the target utilizing geometry and 4 single-point discrete Fourier transforms (DFTs) on the moire patterns. Manual and autonomous movement tests are conducted to determine the accuracy of the system relative to ground truth locations obtained through an external indoor positioning system. Position estimations with accompanying control techniques have been implemented including hovering, static platform landings, and dynamic platform landings to display the algorithm's ability to provide accurate information to precisely control the vehicle. The results confirm the moire target system's feasibility as a viable option for low-cost relative navigation for indoor and outdoor operations including landing on static and dynamic surfaces.

Person Re-Identification

Person Re-Identification PDF Author: Shaogang Gong
Publisher: Springer Science & Business Media
ISBN: 144716296X
Category : Computers
Languages : en
Pages : 446

Get Book Here

Book Description
The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

Observer Trajectory Generation for Target-motion Estimation Using Monocular Vision

Observer Trajectory Generation for Target-motion Estimation Using Monocular Vision PDF Author: Eric W. Frew
Publisher:
ISBN:
Category :
Languages : en
Pages : 148

Get Book Here

Book Description


Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
ISBN: 1608457281
Category : Computers
Languages : en
Pages : 172

Get Book Here

Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

State Estimation for Robotics

State Estimation for Robotics PDF Author: Timothy D. Barfoot
Publisher: Cambridge University Press
ISBN: 1107159393
Category : Computers
Languages : en
Pages : 381

Get Book Here

Book Description
A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.

Computer Vision

Computer Vision PDF Author: Michael Brady
Publisher:
ISBN:
Category : Image processing
Languages : en
Pages : 0

Get Book Here

Book Description


Journal of Guidance, Control, and Dynamics

Journal of Guidance, Control, and Dynamics PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 666

Get Book Here

Book Description