Recent Results from DIII-D and Their Implications for Next Generation Tokamaks

Recent Results from DIII-D and Their Implications for Next Generation Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Get Book Here

Book Description
Recent results from the DIII-D tokamak have provided significant contributions to the understanding of many of the elements of tokamak physics and the application of this understanding to the design of next generation devices including ITER and CIT. The limitations of magnetohydrodynamics stability on the values of plasma beta (the ratio of kinetic pressure to the containing pressure of the magnetic field) that can be attained has been experimentally demonstrated and found to be described by existing theory. Values of beta (10.7%) well in excess of those required for proposed devices (ITER and CIT) have been demonstrated. Regimes of confinement (H-mode) have been established that scale favorably to proposed next generation devices, and experiments demonstrating the dependence of the energy confinement on plasma size have been completed. Understanding of confinement is rapidly developing especially in the areas of bulk transport and the role of turbulence in the plasma edge. Key experimental results in areas of plasma transport and edge plasma phenomena are found to be in agreement with theories based on short wavelength turbulence. Control of the divertor heat loads and impurity influx has been demonstrated, and new progress has been made in the understanding of plasma edge phenomena. Experiments with ion Bernstein wave heating have not found regimes in which these waves can produce effective central ion heating. Electron cyclotron current drive experiments have demonstrated 70 kA of driven current in 400 kA discharges.

Recent Results from DIII-D and Their Implications for Next Generation Tokamaks

Recent Results from DIII-D and Their Implications for Next Generation Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Get Book Here

Book Description
Recent results from the DIII-D tokamak have provided significant contributions to the understanding of many of the elements of tokamak physics and the application of this understanding to the design of next generation devices including ITER and CIT. The limitations of magnetohydrodynamics stability on the values of plasma beta (the ratio of kinetic pressure to the containing pressure of the magnetic field) that can be attained has been experimentally demonstrated and found to be described by existing theory. Values of beta (10.7%) well in excess of those required for proposed devices (ITER and CIT) have been demonstrated. Regimes of confinement (H-mode) have been established that scale favorably to proposed next generation devices, and experiments demonstrating the dependence of the energy confinement on plasma size have been completed. Understanding of confinement is rapidly developing especially in the areas of bulk transport and the role of turbulence in the plasma edge. Key experimental results in areas of plasma transport and edge plasma phenomena are found to be in agreement with theories based on short wavelength turbulence. Control of the divertor heat loads and impurity influx has been demonstrated, and new progress has been made in the understanding of plasma edge phenomena. Experiments with ion Bernstein wave heating have not found regimes in which these waves can produce effective central ion heating. Electron cyclotron current drive experiments have demonstrated 70 kA of driven current in 400 kA discharges.

Recent Results from the DIII-D Tokamak and Implications for Future Devices

Recent Results from the DIII-D Tokamak and Implications for Future Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Get Book Here

Book Description
Improvements to the DIII-D tokamak have led to significant new research results and enhanced performance. These results provide important inputs to the design of next generation divertor systems including the upgrade of the DIII-D divertor. The use of graphite for the plasma facing components and careful wall preparation has enabled the routine achievement of regimes of enhanced energy confinement. In elongated discharges, triangularity has been found to be important in attaining good discharge performance as measured by the product of the normalized plasma pressure and the energy confinement time, [beta][tau]{sub E} This constrains the design of the divertor configuration (X-point location). Active pumping of the divertor region using an in-situ toroidal cryogenic pump has demonstrated control of the plasma density in H-mode discharges and allowed the dependence of confinement on plasma density and current to be separately determined. Helium removal from the plasma edge sufficient to achieve effective ash removal in reactor discharges has also been demonstrated using this pumping configuration. The reduction of the heat flux to the divertor plates has been demonstrated using two different techniques to increase the radiation in the boundary regions of the plasma and thus reduce the heat flux to the divertor plates; deuterium gas injection has been used to create a strongly radiating localized zone near the X-point, and impurity (neon) injection to enhance the radiation from the plasma mantle. Precise shaping of the plasma current profile has been found to be important in achieving enhanced tokamak performance. Transiently shaped current profiles have been used to demonstrate regimes of plasmas with high beta and good confinement. Control of the current profile also is important to sustaining the plasma in the Very High (VH)-mode of energy confinement.

Recent DIII-D Results

Recent DIII-D Results PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
This paper summarizes the recent DIII-D experimental results and the development of the relevant hardware systems. The DIII-D program focuses on divertor solutions for next generation tokamaks such as International Thermo-nuclear Experimental Reactor (ITER) and Tokamak Physics Experiment (TPX), and on developing configurations with enhanced confinement and stability properties that will lead to a more compact and economical fusion reactor. The DIII-D program carries out this research in an integrated fashion.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 380

Get Book Here

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Recent Results from the DIII-D Tokamak

Recent Results from the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
The DIII-D national fusion research program focuses on establishing the scientific basis for optimization of the tokamak approach to fusion energy production. The symbiotic development of research, theory, and hardware continues to fuel the success of the DIII-D program. During the last year, a radiative divertor and a second cryopump were installed in the DIII-D vacuum vessel, an array of central and boundary diagnostics were added, and more sophisticated computer models were developed. These new tools have led to substantial progress in the understanding of the plasma. The authors now have a better understanding of the divertor as a means to manage the heat, particle, and impurity transport pumping of the plasma edge using the in situ divertor cryopumps effectively controls the plasma density. The evolution of diagnostics that probe the interior of the plasma, particularly the motional Stark effect diagnostic, has led to a better understanding of the core of the plasma. This understanding, together with tools to control the profiles, including electron cyclotron waves, pellet injection, and neutral beam injection, has allowed them to progress in making plasma configurations that give rise to both low energy transport and improved stability. Most significant here is the use of transport barriers to improve ion confinement to neoclassical values. Commissioning of the first high power (890 kW) 110 GHz gyrotron validates an important tool for managing the plasma current profile, key to maintaining the transport barriers. An upgraded plasma control system, ''isoflux control, '' which exploits real time MHD equilibrium calculations to determine magnetic flux at specified locations within the tokamak vessel and provides the means for precisely controlling the plasma shape and, in conjunction with other heating and fueling systems, internal profiles.

The Effect of Current Profile Changes on Confinement in the DIII-D Tokamak

The Effect of Current Profile Changes on Confinement in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Experiments in the DIII-D tokamak have demonstrated that the effect of changes in the current profile on plasma confinement varies with the discharge shape. The results are similar in many respects to those from other tokamaks. In all cases, a rapid change in the plasma current in an L-mode, circular or moderately elongated, discharge has been used to produce a transient change in the current density profile. Although the detailed results vary among tokamaks, it is generally observed that during and immediately following a negative plasma current ramp, the stored energy does not follow the L-mode scaling that predicts that confinement should be proportional to the total plasma current. The stored energy changes on the time scale of the relaxation of the current density profile rather than the shorter time scales of the energy confinement time or the change in the total current. Because of the discharge having capability of the DIII-K tokamak it has been possible to extend these current ramp experiments beyond the L-mode, moderate elongation case to highly elongated double-null divertor discharges in H-mode. In separate experiments, a rapid change in the discharge elongation has also been used to vary the current density profile. This paper shows that the dependence of the plasma confinement on the current profile changes when the discharge shape is changed. This variation with discharge shape provides evidence for a model that predicts that changes in the local magnetic shear resulting from the changes in the current profile can result in decreased local transport.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782

Get Book Here

Book Description


Magnetohydrodynamic Stability of Tokamaks

Magnetohydrodynamic Stability of Tokamaks PDF Author: Hartmut Zohm
Publisher: John Wiley & Sons
ISBN: 3527677364
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
This book bridges the gap between general plasma physics lectures and the real world problems in MHD stability. In order to support the understanding of concepts and their implication, it refers to real world problems such as toroidal mode coupling or nonlinear evolution in a conceptual and phenomenological approach. Detailed mathematical treatment will involve classical linear stability analysis and an outline of more recent concepts such as the ballooning formalism. The book is based on lectures that the author has given to Master and PhD students in Fusion Plasma Physics. Due its strong link to experimental results in MHD instabilities, the book is also of use to senior researchers in the field, i.e. experimental physicists and engineers in fusion reactor science. The volume is organized in three parts. It starts with an introduction to the MHD equations, a section on toroidal equilibrium (tokamak and stellarator), and on linear stability analysis. Starting from there, the ideal MHD stability of the tokamak configuration will be treated in the second part which is subdivided into current driven and pressure driven MHD. This includes many examples with reference to experimental results for important MHD instabilities such as kinks and their transformation to RWMs, infernal modes, peeling modes, ballooning modes and their relation to ELMs. Finally the coverage is completed by a chapter on resistive stability explaining reconnection and island formation. Again, examples from recent tokamak MHD such as sawteeth, CTMs, NTMs and their relation to disruptions are extensively discussed.

Fusion Energy Program

Fusion Energy Program PDF Author: United States. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Investigations and Oversight
Publisher:
ISBN:
Category : Fusion reactors
Languages : en
Pages : 820

Get Book Here

Book Description


Encyklopedic Dictionary of Physics

Encyklopedic Dictionary of Physics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 889

Get Book Here

Book Description