Recent Developments in Algebraic Topology

Recent Developments in Algebraic Topology PDF Author: Samuel Gitler
Publisher: American Mathematical Soc.
ISBN: 0821836765
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
This book is an excellent illustration of the versatility of Algebraic Topology interacting with other areas in Mathematics and Physics. Topics discussed in this volume range from classical Differential Topology and Homotopy Theory (Kervaire invariant one problem) to more recent lines of research such as Topological Quantum Field Theory (string theory). Likewise, alternative viewpoints on classical problems in Global Analysis and Dynamical Systems are developed (a spectral sequence approach to normal form theory). This collection of papers is based on talks at the conference on the occasion of Sam Gitler's 70th birthday (December, 2003). The variety of topics covered in this book reflects the many areas where Sam Gitler's contributions have had an impact.

Recent Developments in Algebraic Topology

Recent Developments in Algebraic Topology PDF Author: Samuel Gitler
Publisher: American Mathematical Soc.
ISBN: 0821836765
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
This book is an excellent illustration of the versatility of Algebraic Topology interacting with other areas in Mathematics and Physics. Topics discussed in this volume range from classical Differential Topology and Homotopy Theory (Kervaire invariant one problem) to more recent lines of research such as Topological Quantum Field Theory (string theory). Likewise, alternative viewpoints on classical problems in Global Analysis and Dynamical Systems are developed (a spectral sequence approach to normal form theory). This collection of papers is based on talks at the conference on the occasion of Sam Gitler's 70th birthday (December, 2003). The variety of topics covered in this book reflects the many areas where Sam Gitler's contributions have had an impact.

Current Developments in Algebraic Geometry

Current Developments in Algebraic Geometry PDF Author: Lucia Caporaso
Publisher: Cambridge University Press
ISBN: 052176825X
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.

Algebraic Topology and Related Topics

Algebraic Topology and Related Topics PDF Author: Mahender Singh
Publisher: Springer
ISBN: 9811357420
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Applications of Algebraic Topology

Applications of Algebraic Topology PDF Author: S. Lefschetz
Publisher: Springer Science & Business Media
ISBN: 1468493671
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.

Algebraic Topology

Algebraic Topology PDF Author: C. R. F. Maunder
Publisher: Courier Corporation
ISBN: 9780486691312
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

Algebraic Topology

Algebraic Topology PDF Author: Allen Hatcher
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.

Abstract Homotopy And Simple Homotopy Theory

Abstract Homotopy And Simple Homotopy Theory PDF Author: K Heiner Kamps
Publisher: World Scientific
ISBN: 9814502553
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).

A History of Algebraic and Differential Topology, 1900 - 1960

A History of Algebraic and Differential Topology, 1900 - 1960 PDF Author: Jean Dieudonné
Publisher: Springer Science & Business Media
ISBN: 0817649077
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet

Homology Theory

Homology Theory PDF Author: James W. Vick
Publisher: Springer Science & Business Media
ISBN: 1461208815
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.