Author: Jian-Xin Xu
Publisher: Springer Science & Business Media
ISBN: 1848821751
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Real-time Iterative Learning Control
Author: Jian-Xin Xu
Publisher: Springer Science & Business Media
ISBN: 1848821751
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Publisher: Springer Science & Business Media
ISBN: 1848821751
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Iterative Learning Control
Author: Zeungnam Bien
Publisher: Springer Science & Business Media
ISBN: 1461556295
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.
Publisher: Springer Science & Business Media
ISBN: 1461556295
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.
Iterative Learning Control
Author: Hyo-Sung Ahn
Publisher: Springer Science & Business Media
ISBN: 1846288592
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
Publisher: Springer Science & Business Media
ISBN: 1846288592
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
Iterative Learning Control
Author: Yangquan Chen
Publisher: Springer
ISBN: 1846285399
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.
Publisher: Springer
ISBN: 1846285399
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.
Iterative Learning Control Algorithms and Experimental Benchmarking
Author: Eric Rogers
Publisher: John Wiley & Sons
ISBN: 1118535375
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Iterative Learning CONTROL ALGORITHMS AND EXPERIMENTAL BENCHMARKING Iterative Learning Control Algorithms and Experimental Benchmarking Presents key cutting edge research into the use of iterative learning control The book discusses the main methods of iterative learning control (ILC) and its interactions, as well as comparator performance that is so crucial to the end user. The book provides integrated coverage of the major approaches to-date in terms of basic systems, theoretic properties, design algorithms, and experimentally measured performance, as well as the links with repetitive control and other related areas. Key features: Provides comprehensive coverage of the main approaches to ILC and their relative advantages and disadvantages. Presents the leading research in the field along with experimental benchmarking results. Demonstrates how this approach can extend out from engineering to other areas and, in particular, new research into its use in healthcare systems/rehabilitation robotics. The book is essential reading for researchers and graduate students in iterative learning control, repetitive control and, more generally, control systems theory and its applications.
Publisher: John Wiley & Sons
ISBN: 1118535375
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Iterative Learning CONTROL ALGORITHMS AND EXPERIMENTAL BENCHMARKING Iterative Learning Control Algorithms and Experimental Benchmarking Presents key cutting edge research into the use of iterative learning control The book discusses the main methods of iterative learning control (ILC) and its interactions, as well as comparator performance that is so crucial to the end user. The book provides integrated coverage of the major approaches to-date in terms of basic systems, theoretic properties, design algorithms, and experimentally measured performance, as well as the links with repetitive control and other related areas. Key features: Provides comprehensive coverage of the main approaches to ILC and their relative advantages and disadvantages. Presents the leading research in the field along with experimental benchmarking results. Demonstrates how this approach can extend out from engineering to other areas and, in particular, new research into its use in healthcare systems/rehabilitation robotics. The book is essential reading for researchers and graduate students in iterative learning control, repetitive control and, more generally, control systems theory and its applications.
Linear and Nonlinear Iterative Learning Control
Author: Jian-Xin Xu
Publisher: Springer
ISBN: 3540448454
Category : Science
Languages : en
Pages : 177
Book Description
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Publisher: Springer
ISBN: 3540448454
Category : Science
Languages : en
Pages : 177
Book Description
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Learning Control
Author: Dan Zhang
Publisher: Elsevier
ISBN: 0128223154
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots
Publisher: Elsevier
ISBN: 0128223154
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots
Run-to-Run Control in Semiconductor Manufacturing
Author: James Moyne
Publisher: CRC Press
ISBN: 1420040669
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Run-to-run (R2R) control is cutting-edge technology that allows modification of a product recipe between machine "runs," thereby minimizing process drift, shift, and variability-and with them, costs. Its effectiveness has been demonstrated in a variety of processes, such as vapor phase epitaxy, lithography, and chemical mechanical planarization. The only barrier to the semiconductor industry's widespread adoption of this highly effective process control is a lack of understanding of the technology. Run to Run Control in Semiconductor Manufacturing overcomes that barrier by offering in-depth analyses of R2R control.
Publisher: CRC Press
ISBN: 1420040669
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Run-to-run (R2R) control is cutting-edge technology that allows modification of a product recipe between machine "runs," thereby minimizing process drift, shift, and variability-and with them, costs. Its effectiveness has been demonstrated in a variety of processes, such as vapor phase epitaxy, lithography, and chemical mechanical planarization. The only barrier to the semiconductor industry's widespread adoption of this highly effective process control is a lack of understanding of the technology. Run to Run Control in Semiconductor Manufacturing overcomes that barrier by offering in-depth analyses of R2R control.
Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation
Author: Danwei Wang
Publisher: Springer
ISBN: 9814585602
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much higher accuracy than a feedback control alone can offer. With the proposed ILC algorithms, it is possible that machines can work to their hardware design limits set by sensors and actuators. The target audience for this book includes scientists, engineers and practitioners involved in any systems with repetitive operations.
Publisher: Springer
ISBN: 9814585602
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much higher accuracy than a feedback control alone can offer. With the proposed ILC algorithms, it is possible that machines can work to their hardware design limits set by sensors and actuators. The target audience for this book includes scientists, engineers and practitioners involved in any systems with repetitive operations.
Iterative Learning Stabilization and Fault-Tolerant Control for Batch Processes
Author: Limin Wang
Publisher: Springer
ISBN: 9811357900
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
This book is based on the authors’ research on the stabilization and fault-tolerant control of batch processes, which are flourishing topics in the field of control system engineering. It introduces iterative learning control for linear/nonlinear single/multi-phase batch processes; iterative learning optimal guaranteed cost control; delay-dependent iterative learning control; and iterative learning fault-tolerant control for linear/nonlinear single/multi-phase batch processes. Providing important insights and useful methods and practical algorithms that can potentially be applied in batch process control and optimization, it is a valuable resource for researchers, scientists, and engineers in the field of process system engineering and control engineering.
Publisher: Springer
ISBN: 9811357900
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
This book is based on the authors’ research on the stabilization and fault-tolerant control of batch processes, which are flourishing topics in the field of control system engineering. It introduces iterative learning control for linear/nonlinear single/multi-phase batch processes; iterative learning optimal guaranteed cost control; delay-dependent iterative learning control; and iterative learning fault-tolerant control for linear/nonlinear single/multi-phase batch processes. Providing important insights and useful methods and practical algorithms that can potentially be applied in batch process control and optimization, it is a valuable resource for researchers, scientists, and engineers in the field of process system engineering and control engineering.