Reactor Cavity Cooling System Heat Removal Analysis for a High Temperature Gas Cooled Reactor

Reactor Cavity Cooling System Heat Removal Analysis for a High Temperature Gas Cooled Reactor PDF Author: Hong-Chan Wei
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: The HTR-10 is a small high temperature gas-cooled reactor. It is an experimental pebble-bed helium cooled reactor with a maximum power of 10 MW, constructed between 2000 and 2003 in China. The study focuses on the thermal-fluid analysis of the Reactor Cavity Cooling System (RCCS) with water flows up the pipes to cool the containment. Computational fluid dynamics (CFD) is used to study local heat transfer phenomena in the HTR-10 containment. Heat is transferred to the RCCS mainly via radiation, and to a lesser extent via natural convection. CFD allows for detailed modeling of both heat transfer modes. Sensitivity analyses on the computational grid and the physics models are performed to optimize the simulation. This leads to the use of the k-[omega] model for turbulence and Discrete Ordinates model for radiation. A 2D axisymmetric model is developed to simulate two scenarios from the HTR-10 benchmark exercises provided in the IAEA Coordinated Research Program (CRP-3). The first is a heat up experiment at a reactor power of 200 kW. The experiment simulates normal operation at low power and aims at verifying the RCCS heat removal capability under steady-state conditions. The second is a transient depressurized loss of heat sink accident. In this situation, the reactor is assumed to be running initially at full power, and then the temperature of the core barrel rises over the next 40 hours, peaks, and falls over the next 72 hours. Three fluids are modeled: the helium inside the pressure vessel and outside the core vessel, air in the containment, and water in the RCCS. The boundary conditions are a temperature profile on the core barrel and adiabatic conditions on the containment walls. The simulations lead to safe values of temperature for all the reactor components; also, the computed temperatures compare well with previous simulations performed for the CRP-3.

Reactor Cavity Cooling System Heat Removal Analysis for a High Temperature Gas Cooled Reactor

Reactor Cavity Cooling System Heat Removal Analysis for a High Temperature Gas Cooled Reactor PDF Author: Hong-Chan Wei
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: The HTR-10 is a small high temperature gas-cooled reactor. It is an experimental pebble-bed helium cooled reactor with a maximum power of 10 MW, constructed between 2000 and 2003 in China. The study focuses on the thermal-fluid analysis of the Reactor Cavity Cooling System (RCCS) with water flows up the pipes to cool the containment. Computational fluid dynamics (CFD) is used to study local heat transfer phenomena in the HTR-10 containment. Heat is transferred to the RCCS mainly via radiation, and to a lesser extent via natural convection. CFD allows for detailed modeling of both heat transfer modes. Sensitivity analyses on the computational grid and the physics models are performed to optimize the simulation. This leads to the use of the k-[omega] model for turbulence and Discrete Ordinates model for radiation. A 2D axisymmetric model is developed to simulate two scenarios from the HTR-10 benchmark exercises provided in the IAEA Coordinated Research Program (CRP-3). The first is a heat up experiment at a reactor power of 200 kW. The experiment simulates normal operation at low power and aims at verifying the RCCS heat removal capability under steady-state conditions. The second is a transient depressurized loss of heat sink accident. In this situation, the reactor is assumed to be running initially at full power, and then the temperature of the core barrel rises over the next 40 hours, peaks, and falls over the next 72 hours. Three fluids are modeled: the helium inside the pressure vessel and outside the core vessel, air in the containment, and water in the RCCS. The boundary conditions are a temperature profile on the core barrel and adiabatic conditions on the containment walls. The simulations lead to safe values of temperature for all the reactor components; also, the computed temperatures compare well with previous simulations performed for the CRP-3.

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools PDF Author: Angelo Frisani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The commercial Computational Fluid Dynamics (CFD) STAR-CCM+/ V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. Two models were developed to analyze heat exchange in the RCCS. Both models incorporate a 180 degree section resembling the VHTR RCCS bench table test facility performed at Texas A & M University. All the key features of the experimental facility were taken into account during the numerical simulations. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls temperature below design limits. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The models considered included the first-moment closure one equation Spalart-Allmaras model, the first-moment closure two-equation k-e and k-w models and the second-moment closure Reynolds Stress Transport (RST) model. For the near wall treatments, the low y+ and the all y+ wall treatments were considered. The two-layer model was also used to investigate the effect of near-wall treatment. The comparison of the experimental data with the simulations showed a satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. The tested turbulence models demonstrated that the Realizable k-e model with two-layer all y+ wall treatment performs better than the other k-e models for such a complicated geometry and flow conditions. Results are in satisfactory agreement with the RST simulations and experimental data available. A scaling analysis was developed to address the distortion introduced by the experimental facility and CFD model in simulating the physics inside the RCCS system with respect to the real plant configuration. The scaling analysis demonstrated that both the experimental facility and CFD model give a satisfactory reproduction of the main flow characteristics inside the RCCS cavity region, with convection and radiation heat exchange phenomena being properly scaled from the real plant to the model analyzed.

Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A & M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

Analytical and Numerical Analysis of Natural Circulation for Reactor Cavity Cooling System in Gas Cooled Reactor

Analytical and Numerical Analysis of Natural Circulation for Reactor Cavity Cooling System in Gas Cooled Reactor PDF Author: Dongyoung Lee
Publisher:
ISBN:
Category : Gas cooled reactors
Languages : en
Pages : 154

Get Book Here

Book Description
Among the Generation IV reactors, the Very High Temperature Reactor (VHTR) is being considered as the ideal design for a Next Generation Nuclear Plant (NGNP). The VHTR system is designed for a gas cooled reactor and originates from modifying and further developing the 600MW Gas Turbine-Module Helium Reactor (GTMHR). The GT-MHR system has inherent safety features that make events leading to a severe accident significantly unlikely. The Reactor Cavity Cooling System (RCCS) is a crucial component in passive decay heat removal using air natural convection. The PIRT (Phenomena Identification and Ranking Table) for the RCCS was developed through evaluations of physical phenomena which might arise during a LBLOCA. In addition, this study presents the basic performance for the RCCS using analytical and numerical analysis.

The Effect of Water Vapor in the Reactor Cavity in a MHTGR (Modular High Temperature Gas Cooled Reactor) on the Radiation Heat Transfer

The Effect of Water Vapor in the Reactor Cavity in a MHTGR (Modular High Temperature Gas Cooled Reactor) on the Radiation Heat Transfer PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
Analyses have been completed to determine the effect of the presence of water vapor in the reactor cavity in a modular high temperature gas cooled reactor on the predicted radiation heat transfer from the vessel wall to the reactor cavity cooling system. The analysis involves the radiation heat transfer between two parallel plates with an absorbing and emitting medium present. Because the absorption in the water vapor is spectrally dependent, the solution is difficult even for simple geometries. A computer code was written to solve the problem using the Monte Carlo method. The code was validated against closed form solutions, and shows excellent agreement. In the analysis of the reactor problem, the results show that the reduction in heat transfer, and the consequent increase in the vessel wall temperature, can be significant. This effect can be cast in terms of a reduction in the wall surface emissivities from 0.8 to 0.59. Because of the insulating effect of the water vapor, increasing the gap distance between the vessel wall and the cooling system will cause the vessel wall temperature to increase further. Care should be taken in the design of the facility to minimize the gap distance and keep temperature increase within allowable limits. 3 refs., 6 figs., 4 tabs.

Topical Report

Topical Report PDF Author: Nuclear Engineering Division
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R & D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R & D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R & D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong 3-D effects result in large heat flux, temperature, and heat transfer variations around the tube wall; (b) there is a large difference in the heat transfer coefficient predicted by turbulence models and heat transfer correlations, and this underscores the need of experimental work to validate the thermal performance of the RCCS; and (c) tests at the NSTF would embody all important fluid flow and heat transfer phenomena in the RCCS, in addition to covering the entire parameter ranges that characterize these phenomena. Additional supporting scaling study results are available in Reference 2. The purpose of this work is to develop a high-level engineering plan for mechanical and instrumentation modifications to NSTF in order to meet the following two technical objectives: (1) provide CFD and system-level code development and validation data for the RCCS under prototypic (full-scale) natural convection flow conditions, and (2) support RCCS design validation and optimization. As background for this work, the report begins by providing a summary of the original NSTF design and operational capabilities. Since the facility has not been actively utilized since the early 1990's, the next step is to assess the current facility status. With this background material in place, the data needs and requirements for the facility are then defined on the basis of supporting analysis activities. With the requirements for the facility established, appropriate mechanical and instrumentation modifications to NSTF are then developed in order to meet the overall project objectives. A cost and schedule for modifying the facility to satisfy the RCCS data needs is then provided.

Experimental and Computational Study of a Scaled Reactor Cavity Cooling System

Experimental and Computational Study of a Scaled Reactor Cavity Cooling System PDF Author: Rodolfo Vaghetto
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Very High Temperature Gas-Cooled Reactor (VHTR) is one of the next generation nuclear reactors designed to achieve high temperatures to support industrial applications and power generation. The Reactor Cavity Cooling System (RCCS) is a passive safety system that will be incorporated in the VTHR, designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The overall behavior of the facility met the expectations. The steady-state condition was achieved and the facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation. The experimental data produced during the steady-state run were successfully compared with the simulation results obtained using RELAP5-3D, confirming the capabilities of the system code of simulating the thermal-hydraulic phenomena occurring in the reactor cavity. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151742

Scaling Approach and Thermal-hydraulic Analysis in the Reactor Cavity Cooling System of a High Temperature Gas-cooled Reactor and Thermal-jet Mixing in a Sodium Fast Reactor

Scaling Approach and Thermal-hydraulic Analysis in the Reactor Cavity Cooling System of a High Temperature Gas-cooled Reactor and Thermal-jet Mixing in a Sodium Fast Reactor PDF Author: Olumuyiwa A. Omotowa
Publisher:
ISBN:
Category : Fast reactors
Languages : en
Pages : 502

Get Book Here

Book Description


Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I

Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 185

Get Book Here

Book Description
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

CFD Analysis for the Applicability of the Natural Convection Shutdown Heat Removal Test Facility (NSTF) for the Simulation of the VHTR RCCS. Topical Report

CFD Analysis for the Applicability of the Natural Convection Shutdown Heat Removal Test Facility (NSTF) for the Simulation of the VHTR RCCS. Topical Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The USDOE has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convective Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS.