Causality, Correlation And Artificial Intelligence For Rational Decision Making

Causality, Correlation And Artificial Intelligence For Rational Decision Making PDF Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 9814630888
Category : Computers
Languages : en
Pages : 207

Get Book Here

Book Description
Causality has been a subject of study for a long time. Often causality is confused with correlation. Human intuition has evolved such that it has learned to identify causality through correlation. In this book, four main themes are considered and these are causality, correlation, artificial intelligence and decision making. A correlation machine is defined and built using multi-layer perceptron network, principal component analysis, Gaussian Mixture models, genetic algorithms, expectation maximization technique, simulated annealing and particle swarm optimization. Furthermore, a causal machine is defined and built using multi-layer perceptron, radial basis function, Bayesian statistics and Hybrid Monte Carlo methods. Both these machines are used to build a Granger non-linear causality model. In addition, the Neyman-Rubin, Pearl and Granger causal models are studied and are unified. The automatic relevance determination is also applied to extend Granger causality framework to the non-linear domain. The concept of rational decision making is studied, and the theory of flexibly-bounded rationality is used to extend the theory of bounded rationality within the principle of the indivisibility of rationality. The theory of the marginalization of irrationality for decision making is also introduced to deal with satisficing within irrational conditions. The methods proposed are applied in biomedical engineering, condition monitoring and for modelling interstate conflict.

Causality, Correlation And Artificial Intelligence For Rational Decision Making

Causality, Correlation And Artificial Intelligence For Rational Decision Making PDF Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 9814630888
Category : Computers
Languages : en
Pages : 207

Get Book Here

Book Description
Causality has been a subject of study for a long time. Often causality is confused with correlation. Human intuition has evolved such that it has learned to identify causality through correlation. In this book, four main themes are considered and these are causality, correlation, artificial intelligence and decision making. A correlation machine is defined and built using multi-layer perceptron network, principal component analysis, Gaussian Mixture models, genetic algorithms, expectation maximization technique, simulated annealing and particle swarm optimization. Furthermore, a causal machine is defined and built using multi-layer perceptron, radial basis function, Bayesian statistics and Hybrid Monte Carlo methods. Both these machines are used to build a Granger non-linear causality model. In addition, the Neyman-Rubin, Pearl and Granger causal models are studied and are unified. The automatic relevance determination is also applied to extend Granger causality framework to the non-linear domain. The concept of rational decision making is studied, and the theory of flexibly-bounded rationality is used to extend the theory of bounded rationality within the principle of the indivisibility of rationality. The theory of the marginalization of irrationality for decision making is also introduced to deal with satisficing within irrational conditions. The methods proposed are applied in biomedical engineering, condition monitoring and for modelling interstate conflict.

Rational Decision and Causality

Rational Decision and Causality PDF Author: Ellery Eells
Publisher: Cambridge University Press
ISBN: 1107144817
Category : Business & Economics
Languages : en
Pages : 229

Get Book Here

Book Description
This book is Ellery Eells' influential examination and analysis of theories of rational decision making.

Artificial Intelligence Techniques for Rational Decision Making

Artificial Intelligence Techniques for Rational Decision Making PDF Author: Tshilidzi Marwala
Publisher: Springer
ISBN: 3319114247
Category : Computers
Languages : en
Pages : 178

Get Book Here

Book Description
Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon’s bounded rationality theory are flexible due to advanced signal processing techniques, Moore’s Law and artificial intelligence. Artificial Intelligence Techniques for Rational Decision Making examines and defines the concepts of causal and correlation machines and applies the transmission theory of causality as a defining factor that distinguishes causality from correlation. It develops the theory of rational counterfactuals which are defined as counterfactuals that are intended to maximize the attainment of a particular goal within the context of a bounded rational decision making process. Furthermore, it studies four methods for dealing with irrelevant information in decision making: Theory of the marginalization of irrelevant information Principal component analysis Independent component analysis Automatic relevance determination method In addition it studies the concept of group decision making and various ways of effecting group decision making within the context of artificial intelligence. Rich in methods of artificial intelligence including rough sets, neural networks, support vector machines, genetic algorithms, particle swarm optimization, simulated annealing, incremental learning and fuzzy networks, this book will be welcomed by researchers and students working in these areas.

The Oxford Handbook of Causal Reasoning

The Oxford Handbook of Causal Reasoning PDF Author: Michael Waldmann
Publisher: Oxford University Press
ISBN: 0199399557
Category : Psychology
Languages : en
Pages : 769

Get Book Here

Book Description
Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Without our ability to discover and empirically test causal theories, we would not have made progress in various empirical sciences. The handbook brings together the leading researchers in the field of causal reasoning and offers state-of-the-art presentations of theories and research. It provides introductions of competing theories of causal reasoning, and discusses its role in various cognitive functions and domains. The final section presents research from neighboring fields.

Evidential Decision Theory

Evidential Decision Theory PDF Author: Arif Ahmed
Publisher: Cambridge University Press
ISBN: 1108607861
Category : Science
Languages : en
Pages : 112

Get Book Here

Book Description
Evidential Decision Theory is a radical theory of rational decision-making. It recommends that instead of thinking about what your decisions *cause*, you should think about what they *reveal*. This Element explains in simple terms why thinking in this way makes a big difference, and argues that doing so makes for *better* decisions. An appendix gives an intuitive explanation of the measure-theoretic foundations of Evidential Decision Theory.

Newcomb's Problem

Newcomb's Problem PDF Author: Arif Ahmed
Publisher: Cambridge University Press
ISBN: 1316853004
Category : Science
Languages : en
Pages : 244

Get Book Here

Book Description
Newcomb's problem is a controversial paradox of decision theory. It is easily explained and easily understood, and there is a strong chance that most of us have actually faced it in some form or other. And yet it has proven as thorny and intractable a puzzle as much older and better-known philosophical problems of consciousness, scepticism and fatalism. It brings into very sharp and focused disagreement several long-standing philosophical theories on practical rationality, on the nature of free will, and on the direction and analysis of causation. This volume introduces readers to the nature of Newcomb's problem, and ten chapters by leading scholars present the most recent debates around the problem and analyse its ramifications for decision theory, metaphysics, philosophical psychology and political science. Their chapters highlight the status of Newcomb's problem as a live and continuing issue in modern philosophy.

The Foundations of Causal Decision Theory

The Foundations of Causal Decision Theory PDF Author: James M. Joyce
Publisher: Cambridge University Press
ISBN: 9780521641647
Category : Computers
Languages : en
Pages : 300

Get Book Here

Book Description
The book also contains a major new discussion of what it means to suppose that some event occurs or that some proposition is true.

Rational Decisions

Rational Decisions PDF Author: Ken Binmore
Publisher: Princeton University Press
ISBN: 1400833094
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
It is widely held that Bayesian decision theory is the final word on how a rational person should make decisions. However, Leonard Savage--the inventor of Bayesian decision theory--argued that it would be ridiculous to use his theory outside the kind of small world in which it is always possible to "look before you leap." If taken seriously, this view makes Bayesian decision theory inappropriate for the large worlds of scientific discovery and macroeconomic enterprise. When is it correct to use Bayesian decision theory--and when does it need to be modified? Using a minimum of mathematics, Rational Decisions clearly explains the foundations of Bayesian decision theory and shows why Savage restricted the theory's application to small worlds. The book is a wide-ranging exploration of standard theories of choice and belief under risk and uncertainty. Ken Binmore discusses the various philosophical attitudes related to the nature of probability and offers resolutions to paradoxes believed to hinder further progress. In arguing that the Bayesian approach to knowledge is inadequate in a large world, Binmore proposes an extension to Bayesian decision theory--allowing the idea of a mixed strategy in game theory to be expanded to a larger set of what Binmore refers to as "muddled" strategies. Written by one of the world's leading game theorists, Rational Decisions is the touchstone for anyone needing a concise, accessible, and expert view on Bayesian decision making.

Probabilistic Causality

Probabilistic Causality PDF Author: Ellery Eells
Publisher: Cambridge University Press
ISBN: 0521392446
Category : Business & Economics
Languages : en
Pages : 427

Get Book Here

Book Description
In this important first book in the series Cambridge Studies in Probability, Induction and Decision Theory, Ellery Eells explores and refines current philosophical conceptions of probabilistic causality. In a probabilistic theory of causation, causes increase the probability of their effects rather than necessitate their effects in the ways traditional deterministic theories have specified. Philosophical interest in this subject arises from attempts to understand population sciences as well as indeterminism in physics. Taking into account issues involving spurious correlation, probabilistic causal interaction, disjunctive causal factors, and temporal ideas, Professor Eells advances the analysis of what it is for one factor to be a positive causal factor for another. A salient feature of the book is a new theory of token level probabilistic causation in which the evolution of the probability of a later event from an earlier event is central.

Decision Theory with a Human Face

Decision Theory with a Human Face PDF Author: Richard Bradley
Publisher: Cambridge University Press
ISBN: 1107003210
Category : Business & Economics
Languages : en
Pages : 351

Get Book Here

Book Description
Explores how decision-makers can manage uncertainty that varies in both kind and severity by extending and supplementing Bayesian decision theory.