Author: Oliver C. Ibe
Publisher: John Wiley & Sons
ISBN: 1118617932
Category : Mathematics
Languages : en
Pages : 280
Book Description
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.
Elements of Random Walk and Diffusion Processes
Author: Oliver C. Ibe
Publisher: John Wiley & Sons
ISBN: 1118617932
Category : Mathematics
Languages : en
Pages : 280
Book Description
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.
Publisher: John Wiley & Sons
ISBN: 1118617932
Category : Mathematics
Languages : en
Pages : 280
Book Description
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.
Random Walks and Diffusions on Graphs and Databases
Author: Philipp Blanchard
Publisher: Springer Science & Business Media
ISBN: 364219592X
Category : Science
Languages : en
Pages : 271
Book Description
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
Publisher: Springer Science & Business Media
ISBN: 364219592X
Category : Science
Languages : en
Pages : 271
Book Description
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
Random Walks in Biology
Author: Howard C. Berg
Publisher: Princeton University Press
ISBN: 1400820022
Category : Science
Languages : en
Pages : 166
Book Description
This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know. It provides a sound basis for understanding random motions of molecules, subcellular particles, or cells, or of processes that depend on such motion or are markedly affected by it. Readers do not need to understand thermodynamics in order to acquire a knowledge of the physics involved in diffusion, sedimentation, electrophoresis, chromatography, and cell motility--subjects that become lively and immediate when the author discusses them in terms of random walks of individual particles.
Publisher: Princeton University Press
ISBN: 1400820022
Category : Science
Languages : en
Pages : 166
Book Description
This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know. It provides a sound basis for understanding random motions of molecules, subcellular particles, or cells, or of processes that depend on such motion or are markedly affected by it. Readers do not need to understand thermodynamics in order to acquire a knowledge of the physics involved in diffusion, sedimentation, electrophoresis, chromatography, and cell motility--subjects that become lively and immediate when the author discusses them in terms of random walks of individual particles.
Intersections of Random Walks
Author: Gregory F. Lawler
Publisher: Springer Science & Business Media
ISBN: 1461459729
Category : Mathematics
Languages : en
Pages : 226
Book Description
A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.
Publisher: Springer Science & Business Media
ISBN: 1461459729
Category : Mathematics
Languages : en
Pages : 226
Book Description
A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.
Random Walks and Diffusion
Author: Open University Course Team
Publisher:
ISBN: 9780749251680
Category : Diffusion
Languages : en
Pages : 200
Book Description
This block explores the diffusion equation which is most commonly encountered in discussions of the flow of heat and of molecules moving in liquids, but diffusion equations arise from many different areas of applied mathematics. As well as considering the solutions of diffusion equations in detail, we also discuss the microscopic mechanism underlying the diffusion equation, namely that particles of matter or heat move erratically. This involves a discussion of elementary probability and statistics, which are used to develop a description of random walk processes and of the central limit theorem. These concepts are used to show that if particles follow random walk trajectories, their density obeys the diffusion equation.
Publisher:
ISBN: 9780749251680
Category : Diffusion
Languages : en
Pages : 200
Book Description
This block explores the diffusion equation which is most commonly encountered in discussions of the flow of heat and of molecules moving in liquids, but diffusion equations arise from many different areas of applied mathematics. As well as considering the solutions of diffusion equations in detail, we also discuss the microscopic mechanism underlying the diffusion equation, namely that particles of matter or heat move erratically. This involves a discussion of elementary probability and statistics, which are used to develop a description of random walk processes and of the central limit theorem. These concepts are used to show that if particles follow random walk trajectories, their density obeys the diffusion equation.
First Steps in Random Walks
Author: J. Klafter
Publisher: OUP Oxford
ISBN: 019155295X
Category : Science
Languages : en
Pages : 161
Book Description
The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description.
Publisher: OUP Oxford
ISBN: 019155295X
Category : Science
Languages : en
Pages : 161
Book Description
The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description.
Molecular Biophysics
Author: Michel Daune
Publisher: Oxford University Press, USA
ISBN: 9780198577829
Category : Science
Languages : en
Pages : 499
Book Description
'Molecular Biophysics' offers a comprehensive introduction to the molecular physics of biological systems. It seeks to explain how the laws and concepts of physics apply to the living world at the molecular and subcellular level, with an emphasis on electrical and dynamical bahaviour. This book can pe consulted by advanced undergraduates or graduate students taking courses in biophysics, physical biochemistry, molecular biophysics; researchers and instructors in these fields.
Publisher: Oxford University Press, USA
ISBN: 9780198577829
Category : Science
Languages : en
Pages : 499
Book Description
'Molecular Biophysics' offers a comprehensive introduction to the molecular physics of biological systems. It seeks to explain how the laws and concepts of physics apply to the living world at the molecular and subcellular level, with an emphasis on electrical and dynamical bahaviour. This book can pe consulted by advanced undergraduates or graduate students taking courses in biophysics, physical biochemistry, molecular biophysics; researchers and instructors in these fields.
E. coli in Motion
Author: Howard C. Berg
Publisher: Springer Science & Business Media
ISBN: 0387216383
Category : Science
Languages : en
Pages : 136
Book Description
Escherichia coli, commonly referred to as E. coli, has been the organism of choice for molecular genetics for decades. Its machinery and mobile behavior is one of the most fascinating topics for cell scientists. Scientists and engineers, not trained in microbiology, and who would like to learn more about living machines, can see it as a unique example. This cross-disciplinary monograph covers more than thirty years of research and is accessible to graduate students and scientists alike.
Publisher: Springer Science & Business Media
ISBN: 0387216383
Category : Science
Languages : en
Pages : 136
Book Description
Escherichia coli, commonly referred to as E. coli, has been the organism of choice for molecular genetics for decades. Its machinery and mobile behavior is one of the most fascinating topics for cell scientists. Scientists and engineers, not trained in microbiology, and who would like to learn more about living machines, can see it as a unique example. This cross-disciplinary monograph covers more than thirty years of research and is accessible to graduate students and scientists alike.
First-passage Phenomena And Their Applications
Author: Ralf Metzler
Publisher: World Scientific
ISBN: 9814590304
Category : Science
Languages : en
Pages : 608
Book Description
The book contains review articles on recent advances in first-passage phenomena and applications contributed by leading international experts. It is intended for graduate students and researchers who are interested in learning about this intriguing and important topic.
Publisher: World Scientific
ISBN: 9814590304
Category : Science
Languages : en
Pages : 608
Book Description
The book contains review articles on recent advances in first-passage phenomena and applications contributed by leading international experts. It is intended for graduate students and researchers who are interested in learning about this intriguing and important topic.
Random Walk and the Heat Equation
Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170
Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170
Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.