Spectral Theory of Random Schrödinger Operators

Spectral Theory of Random Schrödinger Operators PDF Author: R. Carmona
Publisher: Springer Science & Business Media
ISBN: 1461244889
Category : Mathematics
Languages : en
Pages : 611

Get Book Here

Book Description
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.

Spectral Theory of Random Schrödinger Operators

Spectral Theory of Random Schrödinger Operators PDF Author: R. Carmona
Publisher: Springer Science & Business Media
ISBN: 1461244889
Category : Mathematics
Languages : en
Pages : 611

Get Book Here

Book Description
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.

Products of Random Matrices with Applications to Schrödinger Operators

Products of Random Matrices with Applications to Schrödinger Operators PDF Author: P. Bougerol
Publisher: Springer Science & Business Media
ISBN: 1468491725
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.

Schrödinger Operators

Schrödinger Operators PDF Author: Hans L. Cycon
Publisher: Springer Science & Business Media
ISBN: 3540167587
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
Are you looking for a concise summary of the theory of Schrödinger operators? Here it is. Emphasizing the progress made in the last decade by Lieb, Enss, Witten and others, the three authors don’t just cover general properties, but also detail multiparticle quantum mechanics – including bound states of Coulomb systems and scattering theory. This corrected and extended reprint contains updated references as well as notes on the development in the field over the past twenty years.

Schrödinger Operators, Spectral Analysis and Number Theory

Schrödinger Operators, Spectral Analysis and Number Theory PDF Author: Sergio Albeverio
Publisher: Springer Nature
ISBN: 3030684903
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
This book gives its readers a unique opportunity to get acquainted with new aspects of the fruitful interactions between Analysis, Geometry, Quantum Mechanics and Number Theory. The present book contains a number of contributions by specialists in these areas as an homage to the memory of the mathematician Erik Balslev and, at the same time, advancing a fascinating interdisciplinary area still full of potential. Erik Balslev has made original and important contributions to several areas of Mathematics and its applications. He belongs to the founders of complex scaling, one of the most important methods in the mathematical and physical study of eigenvalues and resonances of Schrödinger operators, which has been very essential in advancing the solution of fundamental problems in Quantum Mechanics and related areas. He was also a pioneer in making available and developing spectral methods in the study of important problems in Analytic Number Theory.

Random Schrödinger Operators

Random Schrödinger Operators PDF Author: Margherita Disertori
Publisher: SMF
ISBN:
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
During the last thirty years, random Schrodinger operators, which originated in condensed matter physics, have been studied intensively and very productively. The theory is at the crossroads of a number of mathematical fields: the theory of operators, partial differential equations, the theory of probabilities, in particular the study of stochastic processes and that of random walks and Brownian motion in a random environment. This monograph aims to give the reader a panorama of the subject, from the now-classic foundations to very recent developments.

Spectral Theory of Random Schrödinger Operators

Spectral Theory of Random Schrödinger Operators PDF Author: Reinhard Lang
Publisher: Springer
ISBN: 3540466274
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
The interplay between the spectral theory of Schr|dinger operators and probabilistic considerations forms the main theme of these notes, written for the non-specialist reader and intended to provide a brief and elementaryintroduction to this field. An attempt is made to show basic ideas in statu nascendi and to follow their evaluation from simple beginnings through to more advanced results. The term "genetic" in the title refers to this proceedure. The author concentrates on 2 topics which, in the history of the subject, have been of major conceptual importance - on the one hand the Laplacian is a random medium and the left end of its spectrum (leading to large deviation problems for Brownian motion and the link to thenotion of entropy) and on the other, Schr|dinger operators with general ergodic potentials in one-dimensional space. Ideas and concepts are explained in the simplest, possible setting and by means of a few characteristic problems with heuristic arguments preceding rigorous proofs.

Random Operators

Random Operators PDF Author: Michael Aizenman
Publisher: American Mathematical Soc.
ISBN: 1470419130
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization--presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and related results. The text incorporates notes from courses that were presented at the authors' respective institutions and attended by graduate students and postdoctoral researchers.

Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics PDF Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

White Noise Analysis And Quantum Information

White Noise Analysis And Quantum Information PDF Author: Luigi Accardi
Publisher: World Scientific
ISBN: 9813225475
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.

Quantum Waveguides

Quantum Waveguides PDF Author: Pavel Exner
Publisher: Springer
ISBN: 3319185764
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty-five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.