Random Processes for Classical Equations of Mathematical Physics

Random Processes for Classical Equations of Mathematical Physics PDF Author: S.M. Ermakov
Publisher: Springer Science & Business Media
ISBN: 9400922434
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
'Et moi - ... si j'avait su comment en revenir. One service mathema tics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Random Processes for Classical Equations of Mathematical Physics

Random Processes for Classical Equations of Mathematical Physics PDF Author: S.M. Ermakov
Publisher: Springer Science & Business Media
ISBN: 9400922434
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
'Et moi - ... si j'avait su comment en revenir. One service mathema tics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Probability Theory, Random Processes and Mathematical Statistics

Probability Theory, Random Processes and Mathematical Statistics PDF Author: Y. Rozanov
Publisher: Springer Science & Business Media
ISBN: 9401104492
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
Probability Theory, Theory of Random Processes and Mathematical Statistics are important areas of modern mathematics and its applications. They develop rigorous models for a proper treatment for various 'random' phenomena which we encounter in the real world. They provide us with numerous tools for an analysis, prediction and, ultimately, control of random phenomena. Statistics itself helps with choice of a proper mathematical model (e.g., by estimation of unknown parameters) on the basis of statistical data collected by observations. This volume is intended to be a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern Probability, Random Processes and Statistics. The first part (Ch. 1-3) can serve as a self-contained, elementary introduction to Probability, Random Processes and Statistics. It contains a number of relatively sim ple and typical examples of random phenomena which allow a natural introduction of general structures and methods. Only knowledge of elements of real/complex analysis, linear algebra and ordinary differential equations is required here. The second part (Ch. 4-6) provides a foundation of Stochastic Analysis, gives information on basic models of random processes and tools to study them. Here a familiarity with elements of functional analysis is necessary. Our intention to make this course fast-moving made it necessary to present important material in a form of examples.

Stochastic Numerics for Mathematical Physics

Stochastic Numerics for Mathematical Physics PDF Author: Grigori N. Milstein
Publisher: Springer Nature
ISBN: 3030820408
Category : Computers
Languages : en
Pages : 754

Get Book Here

Book Description
This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.

Mathematical Methods in Queuing Theory

Mathematical Methods in Queuing Theory PDF Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9780792325680
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.

Methods of Fourier Analysis and Approximation Theory

Methods of Fourier Analysis and Approximation Theory PDF Author: Michael Ruzhansky
Publisher: Birkhäuser
ISBN: 331927466X
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

Level Sets and Extrema of Random Processes and Fields

Level Sets and Extrema of Random Processes and Fields PDF Author: Jean-Marc Azais
Publisher: John Wiley & Sons
ISBN: 0470434635
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.

Stochastic Processes and Operator Calculus on Quantum Groups

Stochastic Processes and Operator Calculus on Quantum Groups PDF Author: U. Franz
Publisher: Springer Science & Business Media
ISBN: 9401592772
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This book aims to present several new developments on stochastic processes and operator calculus on quantum groups. Topics which are treated include operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Audience: This volume contains introductory material for graduate students who are new to the field, as well as more advanced material for specialists in probability theory, algebraic structures, representation theory, mathematical physics and theoretical physics.

Unbiased Estimators and Their Applications

Unbiased Estimators and Their Applications PDF Author: V.G. Voinov
Publisher: Springer Science & Business Media
ISBN: 9401119708
Category : Business & Economics
Languages : en
Pages : 533

Get Book Here

Book Description
Statistical inferential methods are widely used in the study of various physical, biological, social, and other phenomena. Parametric estimation is one such method. Although there are many books which consider problems of statistical point estimation, this volume is the first to be devoted solely to the problem of unbiased estimation. It contains three chapters dealing, respectively, with the theory of point statistical estimation, techniques for constructing unbiased estimators, and applications of unbiased estimation theory. These chapters are followed by a comprehensive appendix which classifies and lists, in the form of tables, all known results relating to unbiased estimators of parameters for univariate distributions. About one thousand minimum variance unbiased estimators are listed. The volume also contains numerous examples and exercises. This volume will serve as a handbook on point unbiased estimation for researchers whose work involves statistics. It can also be recommended as a supplementary text for graduate students.

Stochastic Methods In Experimental Sciences

Stochastic Methods In Experimental Sciences PDF Author: Waclaw Kasprzak
Publisher: World Scientific
ISBN: 9814611948
Category :
Languages : en
Pages : 490

Get Book Here

Book Description
This volume, containing selected papers presented during the COSMEX '89 meeting, provides readers with integrative and innovative articles on many aspects on many aspects of stochastic methods and their applications to experimental sciences. Offering an interdisciplinary presentation on the uses of stochastic methods, this publication discusses the practical applications of stochastic methods to such diverse areas as biology, chemistry, physics, mechanics and engineering. It also discusses computer implementation of theoretically derived algorithms especially for experimental designs.

Superanalysis

Superanalysis PDF Author: Andrei Y. Khrennikov
Publisher: Springer Science & Business Media
ISBN: 9401146098
Category : Mathematics
Languages : en
Pages : 359

Get Book Here

Book Description
defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigations carried out with the use of commuting and anticom muting coordinates supermathematics; all mathematical objects that appeared in supermathematics were called superobjects, although, of course, there is nothing "super" in supermathematics. However, despite the great achievements in algebraic superanaly sis, this formalism could not be regarded as a generalization to the case of commuting and anticommuting variables from the ordinary Newton analysis. What is more, Schwinger's formalism was still used in practically all physical works, on an intuitive level, and physicists regarded functions of anticommuting variables as "real functions" == maps of sets and not as elements of Grassmann algebras. In 1974, Salam and Strathdee proposed a very apt name for a set of super points. They called this set a superspace.