Random Matrices And Random Partitions: Normal Convergence

Random Matrices And Random Partitions: Normal Convergence PDF Author: Zhonggen Su
Publisher: World Scientific
ISBN: 9814612243
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
This book is aimed at graduate students and researchers who are interested in the probability limit theory of random matrices and random partitions. It mainly consists of three parts. Part I is a brief review of classical central limit theorems for sums of independent random variables, martingale differences sequences and Markov chains, etc. These classical theorems are frequently used in the study of random matrices and random partitions. Part II concentrates on the asymptotic distribution theory of Circular Unitary Ensemble and Gaussian Unitary Ensemble, which are prototypes of random matrix theory. It turns out that the classical central limit theorems and methods are applicable in describing asymptotic distributions of various eigenvalue statistics. This is attributed to the nice algebraic structures of models. This part also studies the Circular β Ensembles and Hermitian β Ensembles. Part III is devoted to the study of random uniform and Plancherel partitions. There is a surprising similarity between random matrices and random integer partitions from the viewpoint of asymptotic distribution theory, though it is difficult to find any direct link between the two finite models. A remarkable point is the conditioning argument in each model. Through enlarging the probability space, we run into independent geometric random variables as well as determinantal point processes with discrete Bessel kernels.This book treats only second-order normal fluctuations for primary random variables from two classes of special random models. It is written in a clear, concise and pedagogical way. It may be read as an introductory text to further study probability theory of general random matrices, random partitions and even random point processes.

Random Matrices And Random Partitions: Normal Convergence

Random Matrices And Random Partitions: Normal Convergence PDF Author: Zhonggen Su
Publisher: World Scientific
ISBN: 9814612243
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
This book is aimed at graduate students and researchers who are interested in the probability limit theory of random matrices and random partitions. It mainly consists of three parts. Part I is a brief review of classical central limit theorems for sums of independent random variables, martingale differences sequences and Markov chains, etc. These classical theorems are frequently used in the study of random matrices and random partitions. Part II concentrates on the asymptotic distribution theory of Circular Unitary Ensemble and Gaussian Unitary Ensemble, which are prototypes of random matrix theory. It turns out that the classical central limit theorems and methods are applicable in describing asymptotic distributions of various eigenvalue statistics. This is attributed to the nice algebraic structures of models. This part also studies the Circular β Ensembles and Hermitian β Ensembles. Part III is devoted to the study of random uniform and Plancherel partitions. There is a surprising similarity between random matrices and random integer partitions from the viewpoint of asymptotic distribution theory, though it is difficult to find any direct link between the two finite models. A remarkable point is the conditioning argument in each model. Through enlarging the probability space, we run into independent geometric random variables as well as determinantal point processes with discrete Bessel kernels.This book treats only second-order normal fluctuations for primary random variables from two classes of special random models. It is written in a clear, concise and pedagogical way. It may be read as an introductory text to further study probability theory of general random matrices, random partitions and even random point processes.

Introduction to Random Matrices

Introduction to Random Matrices PDF Author: Giacomo Livan
Publisher: Springer
ISBN: 3319708856
Category : Science
Languages : en
Pages : 122

Get Book Here

Book Description
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.

Stationary Stochastic Models: An Introduction

Stationary Stochastic Models: An Introduction PDF Author: Riccardo Gatto
Publisher: World Scientific
ISBN: 9811251851
Category : Mathematics
Languages : en
Pages : 415

Get Book Here

Book Description
This volume provides a unified mathematical introduction to stationary time series models and to continuous time stationary stochastic processes. The analysis of these stationary models is carried out in time domain and in frequency domain. It begins with a practical discussion on stationarity, by which practical methods for obtaining stationary data are described. The presented topics are illustrated by numerous examples. Readers will find the following covered in a comprehensive manner:At the end, some selected topics such as stationary random fields, simulation of Gaussian stationary processes, time series for planar directions, large deviations approximations and results of information theory are presented. A detailed appendix containing complementary materials will assist the reader with many technical aspects of the book.

Introduction To Stochastic Processes

Introduction To Stochastic Processes PDF Author: Mu-fa Chen
Publisher: World Scientific
ISBN: 9814740322
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.

Introduction To Probability Theory: A First Course On The Measure-theoretic Approach

Introduction To Probability Theory: A First Course On The Measure-theoretic Approach PDF Author: Nima Moshayedi
Publisher: World Scientific
ISBN: 9811243360
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This book provides a first introduction to the methods of probability theory by using the modern and rigorous techniques of measure theory and functional analysis. It is geared for undergraduate students, mainly in mathematics and physics majors, but also for students from other subject areas such as economics, finance and engineering. It is an invaluable source, either for a parallel use to a related lecture or for its own purpose of learning it.The first part of the book gives a basic introduction to probability theory. It explains the notions of random events and random variables, probability measures, expectation values, distributions, characteristic functions, independence of random variables, as well as different types of convergence and limit theorems. The first part contains two chapters. The first chapter presents combinatorial aspects of probability theory, and the second chapter delves into the actual introduction to probability theory, which contains the modern probability language. The second part is devoted to some more sophisticated methods such as conditional expectations, martingales and Markov chains. These notions will be fairly accessible after reading the first part. /description --

An Introduction to Random Matrices

An Introduction to Random Matrices PDF Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507

Get Book Here

Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

Free Probability and Random Matrices

Free Probability and Random Matrices PDF Author: James A. Mingo
Publisher: Springer
ISBN: 1493969420
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

Random Matrices, Random Processes and Integrable Systems

Random Matrices, Random Processes and Integrable Systems PDF Author: John Harnad
Publisher: Springer Science & Business Media
ISBN: 1441995145
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.

Random Circulant Matrices

Random Circulant Matrices PDF Author: Arup Bose
Publisher: CRC Press
ISBN: 0429788193
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random. In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed. Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee). Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.

Random Matrices and Non-Commutative Probability

Random Matrices and Non-Commutative Probability PDF Author: Arup Bose
Publisher: CRC Press
ISBN: 1000458822
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Möbius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.