The Geometry of Random Fields

The Geometry of Random Fields PDF Author: Robert J. Adler
Publisher: SIAM
ISBN: 0898716934
Category : Mathematics
Languages : en
Pages : 295

Get Book

Book Description
An important treatment of the geometric properties of sets generated by random fields, including a comprehensive treatment of the mathematical basics of random fields in general. It is a standard reference for all researchers with an interest in random fields, whether they be theoreticians or come from applied areas.

The Geometry of Random Fields

The Geometry of Random Fields PDF Author: Robert J. Adler
Publisher: SIAM
ISBN: 0898716934
Category : Mathematics
Languages : en
Pages : 295

Get Book

Book Description
An important treatment of the geometric properties of sets generated by random fields, including a comprehensive treatment of the mathematical basics of random fields in general. It is a standard reference for all researchers with an interest in random fields, whether they be theoreticians or come from applied areas.

Random Fields and Geometry

Random Fields and Geometry PDF Author: R. J. Adler
Publisher: Springer Science & Business Media
ISBN: 0387481168
Category : Mathematics
Languages : en
Pages : 455

Get Book

Book Description
This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.

Stochastic Geometry, Spatial Statistics and Random Fields

Stochastic Geometry, Spatial Statistics and Random Fields PDF Author: Evgeny Spodarev
Publisher: Springer
ISBN: 3642333052
Category : Mathematics
Languages : en
Pages : 470

Get Book

Book Description
This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.

Random Fields and Their Geometry

Random Fields and Their Geometry PDF Author: Robert J. Adler
Publisher:
ISBN: 9780817641542
Category : Mathematics
Languages : en
Pages : 456

Get Book

Book Description
This self-contained monograph contains a number of topics that focus on the many developments in the area of mathematical probability/statistics known as random fields. Robert Adler has been one of the major contributors to this subject. In an earlier work (1981) he dealt with a wide variety of geometrical problems that are unique to stochastic processes in dimensions higher than one, fashioning an interesting blend of geometry and probability. Some old classical topics (non-geometric in nature) are presented in the first few chapters, but the material has been recast in the post-1980 setting of entropy. This is followed by a treatment of random geometry which takes into account the recent work by Worsley et al, and a significant update on our understanding of the fractal nature of erratic random fields. The geometric theme of the book is carried throughout in a user- friendly style. As in his previous work, Adler engages scientists outside of pure and applied mathematics, in particular, researchers involved in brain imaging, and astrophysicists. Applications of excursion set theory in astrophysics and brain imaging are detailed in a short chapter.It is hope that the approach employed in these two quite different areas will direct the reader to finding applications elsewhere. In recent years, the geometry of random fields has also found its way into the literature of materials (surface) science, oceanography, and geology. For applications in the medical community, a chapter discussing the tube formula approach involves the geometry on manifolds and an examination of the distribution of the maximum of Gaussian random

Stochastic Geometry, Spatial Statistics and Random Fields

Stochastic Geometry, Spatial Statistics and Random Fields PDF Author: Volker Schmidt
Publisher: Springer
ISBN: 3319100645
Category : Mathematics
Languages : en
Pages : 464

Get Book

Book Description
This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.

Spatiotemporal Random Fields

Spatiotemporal Random Fields PDF Author: George Christakos
Publisher: Elsevier
ISBN: 0128030321
Category : Science
Languages : en
Pages : 696

Get Book

Book Description
Spatiotemporal Random Fields: Theory and Applications, Second Edition, provides readers with a new and updated edition of the text that explores the application of spatiotemporal random field models to problems in ocean, earth, and atmospheric sciences, spatiotemporal statistics, and geostatistics, among others. The new edition features considerable detail of spatiotemporal random field theory, including ordinary and generalized models, as well as space-time homostationary, isostationary and hetrogeneous approaches. Presenting new theoretical and applied results, with particular emphasis on space-time determination and interpretation, spatiotemporal analysis and modeling, random field geometry, random functionals, probability law, and covariance construction techniques, this book highlights the key role of space-time metrics, the physical interpretation of stochastic differential equations, higher-order space-time variability functions, the validity of major theoretical assumptions in real-world practice (covariance positive-definiteness, metric-adequacy etc.), and the emergence of interdisciplinary phenomena in conditions of multi-sourced real-world uncertainty. Contains applications in the form of examples and case studies, providing readers with first-hand experiences Presents an easy to follow narrative which progresses from simple concepts to more challenging ideas Includes significant updates from the previous edition, including a focus on new theoretical and applied results

Random Fields for Spatial Data Modeling

Random Fields for Spatial Data Modeling PDF Author: Dionissios T. Hristopulos
Publisher: Springer Nature
ISBN: 9402419187
Category : Science
Languages : en
Pages : 884

Get Book

Book Description
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.

Level Sets and Extrema of Random Processes and Fields

Level Sets and Extrema of Random Processes and Fields PDF Author: Jean-Marc Azais
Publisher: John Wiley & Sons
ISBN: 0470434635
Category : Mathematics
Languages : en
Pages : 407

Get Book

Book Description
A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.

Stochastic and Integral Geometry

Stochastic and Integral Geometry PDF Author: Rolf Schneider
Publisher: Springer Science & Business Media
ISBN: 354078859X
Category : Mathematics
Languages : en
Pages : 692

Get Book

Book Description
Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.

Stochastic Geometry

Stochastic Geometry PDF Author: David Coupier
Publisher: Springer
ISBN: 3030135470
Category : Mathematics
Languages : en
Pages : 232

Get Book

Book Description
This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.