RAG-Driven Generative AI

RAG-Driven Generative AI PDF Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 1836200900
Category : Computers
Languages : en
Pages : 335

Get Book Here

Book Description
Minimize AI hallucinations and build accurate, custom generative AI pipelines with RAG using embedded vector databases and integrated human feedback Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Implement RAG’s traceable outputs, linking each response to its source document to build reliable multimodal conversational agents Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs Balance cost and performance between dynamic retrieval datasets and fine-tuning static data Book DescriptionRAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs. This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs. You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.What you will learn Scale RAG pipelines to handle large datasets efficiently Employ techniques that minimize hallucinations and ensure accurate responses Implement indexing techniques to improve AI accuracy with traceable and transparent outputs Customize and scale RAG-driven generative AI systems across domains Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval Control and build robust generative AI systems grounded in real-world data Combine text and image data for richer, more informative AI responses Who this book is for This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you’ll find this book useful.

RAG-Driven Generative AI

RAG-Driven Generative AI PDF Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 1836200900
Category : Computers
Languages : en
Pages : 335

Get Book Here

Book Description
Minimize AI hallucinations and build accurate, custom generative AI pipelines with RAG using embedded vector databases and integrated human feedback Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Implement RAG’s traceable outputs, linking each response to its source document to build reliable multimodal conversational agents Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs Balance cost and performance between dynamic retrieval datasets and fine-tuning static data Book DescriptionRAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs. This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs. You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.What you will learn Scale RAG pipelines to handle large datasets efficiently Employ techniques that minimize hallucinations and ensure accurate responses Implement indexing techniques to improve AI accuracy with traceable and transparent outputs Customize and scale RAG-driven generative AI systems across domains Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval Control and build robust generative AI systems grounded in real-world data Combine text and image data for richer, more informative AI responses Who this book is for This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you’ll find this book useful.

Data-Driven Decision-Making for Business

Data-Driven Decision-Making for Business PDF Author: Claus Grand Bang
Publisher: Taylor & Francis
ISBN: 1040103332
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
Research shows that companies that employ data-driven decision-making are more productive, have a higher market value, and deliver higher returns for their shareholders. In this book, the reader will discover the history, theory, and practice of data-driven decision-making, learning how organizations and individual managers alike can utilize its methods to avoid cognitive biases and improve confidence in their decisions. It argues that value does not come from data, but from acting on data. Throughout the book, the reader will examine how to convert data to value through data-driven decision-making, as well as how to create a strong foundation for such decision-making within organizations. Covering topics such as strategy, culture, analysis, and ethics, the text uses a collection of diverse and up-to-date case studies to convey insights which can be developed into future action. Simultaneously, the text works to bridge the gap between data specialists and businesspeople. Clear learning outcomes and chapter summaries ensure that key points are highlighted, enabling lecturers to easily align the text to their curriculums. Data-Driven Decision-Making for Business provides important reading for undergraduate and postgraduate students of business and data analytics programs, as well as wider MBA classes. Chapters can also be used on a standalone basis, turning the book into a key reference work for students graduating into practitioners. The book is supported by online resources, including PowerPoint slides for each chapter.

Mastering NLP from Foundations to LLMs

Mastering NLP from Foundations to LLMs PDF Author: Lior Gazit
Publisher: Packt Publishing Ltd
ISBN: 1804616389
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key Features Learn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPT Master embedding techniques and machine learning principles for real-world applications Understand the mathematical foundations of NLP and deep learning designs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDo you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learn Master the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in Python Model and classify text using traditional machine learning and deep learning methods Understand the theory and design of LLMs and their implementation for various applications in AI Explore NLP insights, trends, and expert opinions on its future direction and potential Who this book is for This book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.

Generative AI Application Integration Patterns

Generative AI Application Integration Patterns PDF Author: Juan Pablo Bustos
Publisher: Packt Publishing Ltd
ISBN: 1835887619
Category : Computers
Languages : en
Pages : 219

Get Book Here

Book Description
Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations. Key Features Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps Interact with GenAI models to tailor model behavior to minimize hallucinations Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications Book Description Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI. With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns. We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought. Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns. What you will learn Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation Patterns for batch and real-time integration Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more Ethical use: bias mitigation, data privacy, and monitoring Deployment and hosting options for GenAI models Who this book is for This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include: Developer engineers with foundational tech knowledge Software architects seeking best practices and design patterns Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI Technical product managers with a software development background This concise focus ensures practical, actionable insights for experienced professionals

Building Data-Driven Applications with LlamaIndex

Building Data-Driven Applications with LlamaIndex PDF Author: Andrei Gheorghiu
Publisher: Packt Publishing Ltd
ISBN: 1805124404
Category : Computers
Languages : en
Pages : 368

Get Book Here

Book Description
Solve real-world problems easily with artificial intelligence (AI) using the LlamaIndex data framework to enhance your LLM-based Python applications Key Features Examine text chunking effects on RAG workflows and understand security in RAG app development Discover chatbots and agents and learn how to build complex conversation engines Build as you learn by applying the knowledge you gain to a hands-on project Book DescriptionDiscover the immense potential of Generative AI and Large Language Models (LLMs) with this comprehensive guide. Learn to overcome LLM limitations, such as contextual memory constraints, prompt size issues, real-time data gaps, and occasional ‘hallucinations’. Follow practical examples to personalize and launch your LlamaIndex projects, mastering skills in ingesting, indexing, querying, and connecting dynamic knowledge bases. From fundamental LLM concepts to LlamaIndex deployment and customization, this book provides a holistic grasp of LlamaIndex's capabilities and applications. By the end, you'll be able to resolve LLM challenges and build interactive AI-driven applications using best practices in prompt engineering and troubleshooting Generative AI projects.What you will learn Understand the LlamaIndex ecosystem and common use cases Master techniques to ingest and parse data from various sources into LlamaIndex Discover how to create optimized indexes tailored to your use cases Understand how to query LlamaIndex effectively and interpret responses Build an end-to-end interactive web application with LlamaIndex, Python, and Streamlit Customize a LlamaIndex configuration based on your project needs Predict costs and deal with potential privacy issues Deploy LlamaIndex applications that others can use Who this book is for This book is for Python developers with basic knowledge of natural language processing (NLP) and LLMs looking to build interactive LLM applications. Experienced developers and conversational AI developers will also benefit from the advanced techniques covered in the book to fully unleash the capabilities of the framework.

Generative AI with Amazon Bedrock

Generative AI with Amazon Bedrock PDF Author: Shikhar Kwatra
Publisher: Packt Publishing Ltd
ISBN: 1804618586
Category : Computers
Languages : en
Pages : 384

Get Book Here

Book Description
Become proficient in Amazon Bedrock by taking a hands-on approach to building and scaling generative AI solutions that are robust, secure, and compliant with ethical standards Key Features Learn the foundations of Amazon Bedrock from experienced AWS Machine Learning Specialist Architects Master the core techniques to develop and deploy several AI applications at scale Go beyond writing good prompting techniques and secure scalable frameworks by using advanced tips and tricks Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe concept of generative artificial intelligence has garnered widespread interest, with industries looking to leverage it to innovate and solve business problems. Amazon Bedrock, along with LangChain, simplifies the building and scaling of generative AI applications without needing to manage the infrastructure. Generative AI with Amazon Bedrock takes a practical approach to enabling you to accelerate the development and integration of several generative AI use cases in a seamless manner. You’ll explore techniques such as prompt engineering, retrieval augmentation, fine-tuning generative models, and orchestrating tasks using agents. The chapters take you through real-world scenarios and use cases such as text generation and summarization, image and code generation, and the creation of virtual assistants. The latter part of the book shows you how to effectively monitor and ensure security and privacy in Amazon Bedrock. By the end of this book, you’ll have gained a solid understanding of building and scaling generative AI apps using Amazon Bedrock, along with various architecture patterns and security best practices that will help you solve business problems and drive innovation in your organization.What you will learn Explore the generative AI landscape and foundation models in Amazon Bedrock Fine-tune generative models to improve their performance Explore several architecture patterns for different business use cases Gain insights into ethical AI practices, model governance, and risk mitigation strategies Enhance your skills in employing agents to develop intelligence and orchestrate tasks Monitor and understand metrics and Amazon Bedrock model response Explore various industrial use cases and architectures to solve real-world business problems using RAG Stay on top of architectural best practices and industry standards Who this book is for This book is for generalist application engineers, solution engineers and architects, technical managers, ML advocates, data engineers, and data scientists looking to either innovate within their organization or solve business use cases using generative AI. A basic understanding of AWS APIs and core AWS services for machine learning is expected.

Machine Learning and Generative AI for Marketing

Machine Learning and Generative AI for Marketing PDF Author: Yoon Hyup Hwang
Publisher: Packt Publishing Ltd
ISBN: 1835889417
Category : Computers
Languages : en
Pages : 483

Get Book Here

Book Description
Start transforming your data-driven marketing strategies and increasing customer engagement. Learn how to create compelling marketing content using advanced gen AI techniques and stay in touch with the future AI ML landscape. Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Enhance customer engagement and personalization through predictive analytics and advanced segmentation techniques Combine Python programming with the latest advancements in generative AI to create marketing content and address real-world marketing challenges Understand cutting-edge AI concepts and their responsible use in marketing Book Description In the dynamic world of marketing, the integration of artificial intelligence (AI) and machine learning (ML) is no longer just an advantage—it's a necessity. Moreover, the rise of generative AI (GenAI) helps with the creation of highly personalized, engaging content that resonates with the target audience. This book provides a comprehensive toolkit for harnessing the power of GenAI to craft marketing strategies that not only predict customer behaviors but also captivate and convert, leading to improved cost per acquisition, boosted conversion rates, and increased net sales. Starting with the basics of Python for data analysis and progressing to sophisticated ML and GenAI models, this book is your comprehensive guide to understanding and applying AI to enhance marketing strategies. Through engaging content & hands-on examples, you'll learn how to harness the capabilities of AI to unlock deep insights into customer behaviors, craft personalized marketing messages, and drive significant business growth. Additionally, you'll explore the ethical implications of AI, ensuring that your marketing strategies are not only effective but also responsible and compliant with current standards By the conclusion of this book, you'll be equipped to design, launch, and manage marketing campaigns that are not only successful but also cutting-edge. What you will learn Master key marketing KPIs with advanced computational techniques Use explanatory data analysis to drive marketing decisions Leverage ML models to predict customer behaviors, engagement levels, and customer lifetime value Enhance customer segmentation with ML and develop highly personalized marketing campaigns Design and execute effective A/B tests to optimize your marketing decisions Apply natural language processing (NLP) to analyze customer feedback and sentiments Integrate ethical AI practices to maintain privacy in data-driven marketing strategies Who this book is for This book targets a diverse group of professionals: Data scientists and analysts in the marketing domain looking to apply advanced AI ML techniques to solve real-world marketing challenges Machine learning engineers and software developers aiming to build or integrate AI-driven tools and applications for marketing purposes Marketing professionals, business leaders, and entrepreneurs who must understand the impact of AI on marketing Reader are presumed to have a foundational proficiency in Python and a basic to intermediate grasp of ML principles and data science methodologies.

Generative AI for Enterprises

Generative AI for Enterprises PDF Author: Vishal Anand
Publisher: BPB Publications
ISBN: 9355516975
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
DESCRIPTION Generative AI can streamline technical and business processes, increase efficiency, and free up your resources’ time to focus on more strategic initiatives. This book takes the readers through a series of steps to deepen their understanding of the forces that shape an organization’s implementation of Generative AI at scale and successfully dealing with them. This book starts with GenAI potential uses, challenges and enterprise deployment strategies. You will learn to scale GenAI models along with LLMOps, choose the right LLM, and use prompt engineering and fine-tuning to customize the outputs. This book introduces a GenAI operating system as well as an orchestration platform for workflow automation. It discusses ethical considerations, designing a target operating model, cost optimization, Retrieval-augmented Generation (RAG), Model as a Service (MaaS), and Confidential AI. Finally, it explores the future of multi-modal AI assistants in enterprises. This book makes it easier for readers to debunk myths, and address fallacies and common misconceptions that could harm organizational investment and reputation. There are also practical and enterprise class scenarios and information that could help in improving implementations, within your organization, enabling you to achieve success beyond scaling challenges. KEY FEATURES ● Understand challenges and dimensions of model at scale. ● Understand model selection criteria, deployment patterns, and positioning. ● Design operating system and demarcation of landing zones. ● Understand enterprise application of prompt engineering and fine-tuning. ● Understand operating model, orchestration platform, multi AI assistants and ethical considerations. ● Understand various latency factors for Gen AI solutions. WHAT YOU WILL LEARN ● Strategies for scaling GenAI models and discovering LLMOps for managing them. ● How to leverage GenAI to streamline enterprise class processes, boost efficiency, and explore new possibilities. ● Implementations in the enterprise class deployments, addressing potential issues and connecting with enablers and accurate growth strategy and execution principles. WHO THIS BOOK IS FOR This book is for decision makers like CIOs, CTOs, CAIOs, Enterprise Architects, Chief Engineers, and anyone who wishes to learn how to have a rewarding implementation of Generative AI for their organizations and clients. TABLE OF CONTENTS 1. The Rise of Generative AI in Enterprises 2. Complex Needs of Production 3. Model Selection for Enterprises 4. Model Deployment for Enterprises 5. Operating System for Enterprises 6. Prompt Engineering for Enterprises 7. Fine-tuning for Enterprises 8. Orchestration of Generative AI Workflows 9. Six Ethical Dimensions for Enterprises 10. Designing a Target Operating Model 11. Cost Optimization Strategies 12. Retrieval-augmented Generation for Enterprises 13. Model as a Service for Enterprises 14. Confidential AI 15. Latency in Generative AI Solutions 16. Multi-modal Multi-agentic Assistant Framework for Enterprises

Generative AI in Action

Generative AI in Action PDF Author: Amit Bahree
Publisher: Simon and Schuster
ISBN: 1633436942
Category : Computers
Languages : en
Pages : 462

Get Book Here

Book Description
Generative AI can transform your business by streamlining the process of creating text, images, and code. This book will show you how to get in on the action! Generative AI in Action is the comprehensive and concrete guide to generative AI you’ve been searching for. It introduces both AI’s fundamental principles and its practical applications in an enterprise context—from generating text and images for product catalogs and marketing campaigns, to technical reporting, and even writing software. Inside, author Amit Bahree shares his experience leading Generative AI projects at Microsoft for nearly a decade, starting well before the current GPT revolution. Inside Generative AI in Action you will find: • A practical overview of of generative AI applications • Architectural patterns, integration guidance, and best practices for generative AI • The latest techniques like RAG, prompt engineering, and multi-modality • The challenges and risks of generative AI like hallucinations and jailbreaks • How to integrate generative AI into your business and IT strategy Generative AI in Action is full of real-world use cases for generative AI, showing you where and how to start integrating this powerful technology into your products and workflows. You’ll benefit from tried-and-tested implementation advice, as well as application architectures to deploy GenAI in production at enterprise scale. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology In controlled environments, deep learning systems routinely surpass humans in reading comprehension, image recognition, and language understanding. Large Language Models (LLMs) can deliver similar results in text and image generation and predictive reasoning. Outside the lab, though, generative AI can both impress and fail spectacularly. So how do you get the results you want? Keep reading! About the book Generative AI in Action presents concrete examples, insights, and techniques for using LLMs and other modern AI technologies successfully and safely. In it, you’ll find practical approaches for incorporating AI into marketing, software development, business report generation, data storytelling, and other typically-human tasks. You’ll explore the emerging patterns for GenAI apps, master best practices for prompt engineering, and learn how to address hallucination, high operating costs, the rapid pace of change and other common problems. What's inside • Best practices for deploying Generative AI apps • Production-quality RAG • Adapting GenAI models to your specific domain About the reader For enterprise architects, developers, and data scientists interested in upgrading their architectures with generative AI. About the author Amit Bahree is Principal Group Product Manager for the Azure AI engineering team at Microsoft. The technical editor on this book was Wee Hyong Tok. Table of Contents Part 1 1 Introduction to generative AI 2 Introduction to large language models 3 Working through an API: Generating text 4 From pixels to pictures: Generating images 5 What else can AI generate? Part 2 6 Guide to prompt engineering 7 Retrieval-augmented generation: The secret weapon 8 Chatting with your data 9 Tailoring models with model adaptation and fine-tuning Part 3 10 Application architecture for generative AI apps 11 Scaling up: Best practices for production deployment 12 Evaluations and benchmarks 13 Guide to ethical GenAI: Principles, practices, and pitfalls A The book’s GitHub repository B Responsible AI tools

Transformers for Natural Language Processing and Computer Vision

Transformers for Natural Language Processing and Computer Vision PDF Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 1805123742
Category : Computers
Languages : en
Pages : 731

Get Book Here

Book Description
The definitive guide to LLMs, from architectures, pretraining, and fine-tuning to Retrieval Augmented Generation (RAG), multimodal Generative AI, risks, and implementations with ChatGPT Plus with GPT-4, Hugging Face, and Vertex AI Key Features Compare and contrast 20+ models (including GPT-4, BERT, and Llama 2) and multiple platforms and libraries to find the right solution for your project Apply RAG with LLMs using customized texts and embeddings Mitigate LLM risks, such as hallucinations, using moderation models and knowledge bases Purchase of the print or Kindle book includes a free eBook in PDF format Book DescriptionTransformers for Natural Language Processing and Computer Vision, Third Edition, explores Large Language Model (LLM) architectures, applications, and various platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing (NLP) and Computer Vision (CV). The book guides you through different transformer architectures to the latest Foundation Models and Generative AI. You’ll pretrain and fine-tune LLMs and work through different use cases, from summarization to implementing question-answering systems with embedding-based search techniques. You will also learn the risks of LLMs, from hallucinations and memorization to privacy, and how to mitigate such risks using moderation models with rule and knowledge bases. You’ll implement Retrieval Augmented Generation (RAG) with LLMs to improve the accuracy of your models and gain greater control over LLM outputs. Dive into generative vision transformers and multimodal model architectures and build applications, such as image and video-to-text classifiers. Go further by combining different models and platforms and learning about AI agent replication. This book provides you with an understanding of transformer architectures, pretraining, fine-tuning, LLM use cases, and best practices.What you will learn Breakdown and understand the architectures of the Original Transformer, BERT, GPT models, T5, PaLM, ViT, CLIP, and DALL-E Fine-tune BERT, GPT, and PaLM 2 models Learn about different tokenizers and the best practices for preprocessing language data Pretrain a RoBERTa model from scratch Implement retrieval augmented generation and rules bases to mitigate hallucinations Visualize transformer model activity for deeper insights using BertViz, LIME, and SHAP Go in-depth into vision transformers with CLIP, DALL-E 2, DALL-E 3, and GPT-4V Who this book is for This book is ideal for NLP and CV engineers, software developers, data scientists, machine learning engineers, and technical leaders looking to advance their LLMs and generative AI skills or explore the latest trends in the field. Knowledge of Python and machine learning concepts is required to fully understand the use cases and code examples. However, with examples using LLM user interfaces, prompt engineering, and no-code model building, this book is great for anyone curious about the AI revolution.