Radon Integrals

Radon Integrals PDF Author: B. Anger
Publisher: Springer Science & Business Media
ISBN: 1461203775
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.

Radon Integrals

Radon Integrals PDF Author: B. Anger
Publisher: Springer Science & Business Media
ISBN: 1461203775
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.

Integral Geometry and Radon Transforms

Integral Geometry and Radon Transforms PDF Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 1441960546
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
In this text, integral geometry deals with Radon’s problem of representing a function on a manifold in terms of its integrals over certain submanifolds—hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: “Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area.” —Boris Rubin, Louisiana State University

The Radon Transform

The Radon Transform PDF Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 9780817641092
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.

Measure and Integration

Measure and Integration PDF Author: Heinz König
Publisher: Springer Science & Business Media
ISBN: 3034803826
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
This collection of Heinz König’s publications connects to his book of 1997 “Measure and Integration” and presents significant developments in the subject from then up to the present day. The result is a consistent new version of measure theory, including selected applications. The basic step is the introduction of the inner • (bullet) and outer • (bullet) premeasures and their extension to unique maximal measures. New “envelopes” for the initial set function (to replace the traditional Carathéodory outer measures) have been created, which lead to much simpler and more explicit treatment. In view of these new concepts, the main results are unmatched in scope and plainness, as well as in explicitness. Important examples are the formation of products, a unified Daniell-Stone-Riesz representation theorem, and projective limits. Further to the contributions in this volume, after 2011 Heinz König published two more articles that round up his work: On the marginals of probability contents on lattices (Mathematika 58, No. 2, 319-323, 2012), and Measure and integration: the basic extension and representation theorems in terms of new inner and outer envelopes (Indag. Math., New Ser. 25, No. 2, 305-314, 2014).

Integral and Functional Analysis

Integral and Functional Analysis PDF Author: Jie Xiao
Publisher: Nova Publishers
ISBN: 9781600217845
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
This book is based on two closely-related courses. The first of these courses is Integration and Metric Spaces, and the second being Functional Analysis. Though the contents of Functional Analysis have been used for both an undergraduate course and an introductory graduate course, this text is designed primarily for undergraduate students. The prerequisites of this book are deliberately modest, and it is assumed that the students have some familiarity with Introductory Calculus and Linear Algebra plus the basic (direct, indirect) proof methods.

Fundamentals of Functions and Measure Theory

Fundamentals of Functions and Measure Theory PDF Author: Valeriy K. Zakharov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110550229
Category : Mathematics
Languages : en
Pages : 597

Get Book Here

Book Description
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics. The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Historical foreword on the centenary after Felix Hausdorff’s classic Set Theory Fundamentals of the theory of functions Fundamentals of the measure theory Historical notes on the Riesz – Radon – Frechet problem of characterization of Radon integrals as linear functionals

Radon Integrals

Radon Integrals PDF Author: Bernd Anger
Publisher: Springer Science & Business Media
ISBN: 9780817636302
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.

Integral Geometry and Tomography

Integral Geometry and Tomography PDF Author: Andrew Markoe
Publisher: American Mathematical Soc.
ISBN: 0821837559
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
This volume consists of a collection of papers that brings together fundamental research in Radon transforms, integral geometry, and tomography. It grew out of the Special Session at a Sectional Meeting of the American Mathematical Society in 2004. The book contains very recent work of some of the top researchers in the field. The articles in the book deal with the determination of properties of functions on a manifold by integral theoretic methods, or by determining the geometricstructure of subsets of a manifold by analytic methods. Of particular concern are ways of reconstructing an unknown function from some of its projections. Radon transforms were developed at the beginning of the twentieth century by researchers who were motivated by problems in differential geometry,mathematical physics, and partial differential equations. Later, medical applications of these transforms produced breakthroughs in imaging technology that resulted in the 1979 Nobel Prize in Physiology and Medicine for the development of computerized tomography. Today the subject boasts substantial cross-disciplinary interactions, both in pure and applied mathematics as well as medicine, engineering, biology, physics, geosciences, and industrial testing. Therefore, this volume should be ofinterest to a wide spectrum of researchers both in mathematics and in other fields.

Nonlinear Analysis, Differential Equations, and Applications

Nonlinear Analysis, Differential Equations, and Applications PDF Author: Themistocles M. Rassias
Publisher: Springer Nature
ISBN: 3030725634
Category : Mathematics
Languages : en
Pages : 791

Get Book Here

Book Description
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers–Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg–Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdős-Rényi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.

Geometric Analysis and Integral Geometry

Geometric Analysis and Integral Geometry PDF Author: Eric Todd Quinto
Publisher: American Mathematical Soc.
ISBN: 0821887386
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
Provides an historical overview of several decades in integral geometry and geometric analysis as well as recent advances in these fields and closely related areas. It contains several articles focusing on the mathematical work of Sigurdur Helgason, including an overview of his research by Gestur Olafsson and Robert Stanton.