Author: Oleg Dolmatov
Publisher:
ISBN: 9783038353768
Category : Materials science
Languages : en
Pages : 0
Book Description
Selected, peer reviewed papers from the Conference on Physical-Technical Problems of Nuclear Science, Energy Generation and Power Industry, (PTPAI 2014), June 5-7, 2014, Tomsk, Russia
Radiation and Nuclear Techniques in Material Science
Author: Oleg Dolmatov
Publisher:
ISBN: 9783038353768
Category : Materials science
Languages : en
Pages : 0
Book Description
Selected, peer reviewed papers from the Conference on Physical-Technical Problems of Nuclear Science, Energy Generation and Power Industry, (PTPAI 2014), June 5-7, 2014, Tomsk, Russia
Publisher:
ISBN: 9783038353768
Category : Materials science
Languages : en
Pages : 0
Book Description
Selected, peer reviewed papers from the Conference on Physical-Technical Problems of Nuclear Science, Energy Generation and Power Industry, (PTPAI 2014), June 5-7, 2014, Tomsk, Russia
Nuclear Materials Science
Author: Karl R. Whittle
Publisher:
ISBN: 9780750311052
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.
Publisher:
ISBN: 9780750311052
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.
Nuclear Techniques for Cultural Heritage Research
Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201145109
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
"Scientific studies of art and archaeology are a necessary complement to cultural heritage conservation, preservation and investigation. Nuclear techniques, such as neutron activation analysis, X ray fluorescence analysis and ion beam analysis, have a potential for non-destructive and reliable investigation of precious artefacts and materials, such as ceramics, stone, metal, and pigments from paintings. Such information can be helpful in repair of damaged objects, in identification of fraudulent artefacts and in the appropriate categorization of historic artefacts."--P. [4] of cover.
Publisher:
ISBN: 9789201145109
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
"Scientific studies of art and archaeology are a necessary complement to cultural heritage conservation, preservation and investigation. Nuclear techniques, such as neutron activation analysis, X ray fluorescence analysis and ion beam analysis, have a potential for non-destructive and reliable investigation of precious artefacts and materials, such as ceramics, stone, metal, and pigments from paintings. Such information can be helpful in repair of damaged objects, in identification of fraudulent artefacts and in the appropriate categorization of historic artefacts."--P. [4] of cover.
Fundamentals of Radiation Materials Science
Author: GARY S. WAS
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014
Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014
Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Radiochemistry and Nuclear Chemistry
Author: Gregory Choppin
Publisher: Butterworth-Heinemann
ISBN: 0750674636
Category : Science
Languages : en
Pages : 726
Book Description
Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index.
Publisher: Butterworth-Heinemann
ISBN: 0750674636
Category : Science
Languages : en
Pages : 726
Book Description
Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index.
Physics of Nuclear Radiations
Author: Chary Rangacharyulu
Publisher: Taylor & Francis
ISBN: 1439857776
Category : Medical
Languages : en
Pages : 386
Book Description
Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy and time spectroscopies before concluding with applications in agriculture, medicine, industry, and art.
Publisher: Taylor & Francis
ISBN: 1439857776
Category : Medical
Languages : en
Pages : 386
Book Description
Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy and time spectroscopies before concluding with applications in agriculture, medicine, industry, and art.
Techniques for Nuclear and Particle Physics Experiments
Author: William R. Leo
Publisher: Springer Science & Business Media
ISBN: 3642579205
Category : Science
Languages : en
Pages : 385
Book Description
A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.
Publisher: Springer Science & Business Media
ISBN: 3642579205
Category : Science
Languages : en
Pages : 385
Book Description
A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.
Radiation and Nuclear Techniques in Material Science
Author: Oleg Yu. Dolmatov
Publisher: Trans Tech Publications Ltd
ISBN: 3038267619
Category : Technology & Engineering
Languages : en
Pages : 751
Book Description
Selected, peer reviewed papers from the Conference on Physical-Technical Problems of Nuclear Science, Energy Generation and Power Industry, (PTPAI 2014), June 5-7, 2014, Tomsk, Russia
Publisher: Trans Tech Publications Ltd
ISBN: 3038267619
Category : Technology & Engineering
Languages : en
Pages : 751
Book Description
Selected, peer reviewed papers from the Conference on Physical-Technical Problems of Nuclear Science, Energy Generation and Power Industry, (PTPAI 2014), June 5-7, 2014, Tomsk, Russia
Analytical Applications of Nuclear Techniques
Author:
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 224
Book Description
The IAEA has compiled this overview of current applications of nuclear analytical techniques (NATs). The contributions included in this book describe a variety of nuclear techniques and applications, such as those in the fields of environment and health, industrial processes, non-destructive testing, forensic and archaeological investigations, cosmochemistry and method validation. The techniques covered range from classical instrumental neutron activation analysis (INAA), its radiochemical derivative RNAA, in-beam methods such as prompt y neutron activation analysis (PGNAA) and accelerator mass spectrometry (AMS), to X ray fluorescence (XRF) and proton induced X ray emission (PIXE) spectroscopy. Isotopic techniques to investigate element behaviour in biology and medicine, and also to validate other non-nuclear analytical techniques, are described. Destructive and non-destructiveapproaches are presented, along with their use to investigate very small and very large samples, archaeological samples and extraterrestrial samples. Several nuclear analytical applications in industry are described that have considerable socioeconomic impact wherever they can be implemented.
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 224
Book Description
The IAEA has compiled this overview of current applications of nuclear analytical techniques (NATs). The contributions included in this book describe a variety of nuclear techniques and applications, such as those in the fields of environment and health, industrial processes, non-destructive testing, forensic and archaeological investigations, cosmochemistry and method validation. The techniques covered range from classical instrumental neutron activation analysis (INAA), its radiochemical derivative RNAA, in-beam methods such as prompt y neutron activation analysis (PGNAA) and accelerator mass spectrometry (AMS), to X ray fluorescence (XRF) and proton induced X ray emission (PIXE) spectroscopy. Isotopic techniques to investigate element behaviour in biology and medicine, and also to validate other non-nuclear analytical techniques, are described. Destructive and non-destructiveapproaches are presented, along with their use to investigate very small and very large samples, archaeological samples and extraterrestrial samples. Several nuclear analytical applications in industry are described that have considerable socioeconomic impact wherever they can be implemented.
Nuclear Physics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309260434
Category : Science
Languages : en
Pages : 263
Book Description
The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.
Publisher: National Academies Press
ISBN: 0309260434
Category : Science
Languages : en
Pages : 263
Book Description
The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.