Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems PDF Author: Roland Glowinski
Publisher: Springer Science & Business Media
ISBN: 3662126133
Category : Science
Languages : en
Pages : 506

Get Book Here

Book Description
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems PDF Author: Roland Glowinski
Publisher: Springer Science & Business Media
ISBN: 3662126133
Category : Science
Languages : en
Pages : 506

Get Book Here

Book Description
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

Computation and Applied Mathematics

Computation and Applied Mathematics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 84

Get Book Here

Book Description


Lectures on Numerical Methods for Non-Linear Variational Problems

Lectures on Numerical Methods for Non-Linear Variational Problems PDF Author: R. Glowinski
Publisher: Springer Science & Business Media
ISBN: 3540775064
Category : Mathematics
Languages : en
Pages : 507

Get Book Here

Book Description
When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.

Nonlinear Problems of Elasticity

Nonlinear Problems of Elasticity PDF Author: Stuart Antman
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.

Mathematical Analysis and Numerical Methods for Science and Technology

Mathematical Analysis and Numerical Methods for Science and Technology PDF Author: Robert Dautray
Publisher: Springer
ISBN: 364261566X
Category : Mathematics
Languages : en
Pages : 604

Get Book Here

Book Description
These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which together with given boundary data and, if the phenomenon is evolving in time, initial data, defines the system. The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. Modeling by distributed systems now also supports work in many areas of physics (plasmas, new materials, astrophysics, geophysics), chemistry and mechanics and is finding increasing use in the life sciences.

Nonlinear Functional Analysis and its Applications

Nonlinear Functional Analysis and its Applications PDF Author: E. Zeidler
Publisher: Springer Science & Business Media
ISBN: 146125020X
Category : Science
Languages : en
Pages : 675

Get Book Here

Book Description
As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.

Approximation Methods for Navier-Stokes Problems

Approximation Methods for Navier-Stokes Problems PDF Author: R. Rautmann
Publisher: Springer
ISBN: 3540385509
Category : Mathematics
Languages : en
Pages : 602

Get Book Here

Book Description


Mathematical Methods for the Magnetohydrodynamics of Liquid Metals

Mathematical Methods for the Magnetohydrodynamics of Liquid Metals PDF Author: Jean-Frédéric Gerbeau
Publisher: Numerical Mathematics and Scie
ISBN: 0198566654
Category : Language Arts & Disciplines
Languages : en
Pages : 325

Get Book Here

Book Description
This comprehensive text focuses on mathematical and numerical techniques for the simulation of magnetohydrodynamic phenomena, with an emphasis laid on the magnetohydrodynamics of liquid metals, and on a prototypical industrial application. Aimed at research mathematicians, engineers, and physicists, as well as those working in industry, and starting from a good understanding of the physics at play, the approach is a highly mathematical one, based on the rigorous analysis of theequations at hand, and a solid numerical analysis to found the simulations. At each stage of the exposition, examples of numerical simulations are provided, first on academic test cases to illustrate the approach, next on benchmarks well documented in the professional literature, and finally, wheneverpossible, on real industrial cases.

Numerical Simulation of Incompressible Viscous Flow

Numerical Simulation of Incompressible Viscous Flow PDF Author: Roland Glowinski
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110785013
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This text on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to split complicated computational fluid dynamics problems into a sequence of simpler sub-problems. A methodology for solving more advanced applications such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid is also presented.

Variational Inequalities and Frictional Contact Problems

Variational Inequalities and Frictional Contact Problems PDF Author: Anca Capatina
Publisher: Springer
ISBN: 3319101633
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.