Quantum Transport in Two-dimensional Electron System: 1.Transition Dynamics in the Electrical Breakdown of the Integer Quantum Hall Effect 2.Disorder Induced Scattering in Chemical Vapor Deposited Graphene

Quantum Transport in Two-dimensional Electron System: 1.Transition Dynamics in the Electrical Breakdown of the Integer Quantum Hall Effect 2.Disorder Induced Scattering in Chemical Vapor Deposited Graphene PDF Author: 李明洋
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Quantum Transport in Semiconductors

Quantum Transport in Semiconductors PDF Author: David K. Ferry
Publisher: Springer Science & Business Media
ISBN: 1489923594
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
The majority of the chapters in this volume represent a series of lectures. that were given at a workshop on quantum transport in ultrasmall electron devices, held at San Miniato, Italy, in March 1987. These have, of course, been extended and updated during the period that has elapsed since the workshop was held, and have been supplemented with additional chapters devoted to the tunneling process in semiconductor quantum-well structures. The aim of this work is to review and present the current understanding in nonequilibrium quantum transport appropriate to semiconductors. Gen erally, the field of interest can be categorized as that appropriate to inhomogeneous transport in strong applied fields. These fields are most likely to be strongly varying in both space and time. Most of the literature on quantum transport in semiconductors (or in metallic systems, for that matter) is restricted to the equilibrium approach, in which spectral densities are maintained as semiclassical energy conserving delta functions, or perhaps incorporating some form of collision broadening through a Lorentzian shape, and the distribution functions are kept in the equilibrium Fermi-Dirac form. The most familiar field of nonequilibrium transport, at least for the semiconductor world, is that of hot carriers in semiconductors.

Lanthanide Single Molecule Magnets

Lanthanide Single Molecule Magnets PDF Author: Jinkui Tang
Publisher: Springer
ISBN: 3662469995
Category : Science
Languages : en
Pages : 219

Get Book Here

Book Description
This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.

Research Advances in Quantum Dynamics

Research Advances in Quantum Dynamics PDF Author: Paul Bracken
Publisher: BoD – Books on Demand
ISBN: 9535124854
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
There continue at present many developments in the area of quantum mechanics and quantum dynamics in particular, of a very fundamental nature, all the way from implications for the foundations of physics to the influence of quantum mechanics on emerging technologies, such as the areas of quantum semiconductors and quantum computing, both of which are very important examples. It is hoped that the papers in this volume will be able to provide a much needed resource for researchers with regard to current fields of research in this dynamic area.

An Introduction to Quantum Transport in Semiconductors

An Introduction to Quantum Transport in Semiconductors PDF Author: David K. Ferry
Publisher: CRC Press
ISBN: 1351796372
Category : Science
Languages : en
Pages : 323

Get Book Here

Book Description
Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics—semiconductors, with their variable densities and effective masses. The author develops Green’s functions starting from equilibrium Green’s functions and going through modern time-dependent approaches to non-equilibrium Green’s functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.

Quantum Transport in Semiconductor Submicron Structures

Quantum Transport in Semiconductor Submicron Structures PDF Author: B. Kramer
Publisher: Springer Science & Business Media
ISBN: 9400917600
Category : Science
Languages : en
Pages : 382

Get Book Here

Book Description
The articles in this book have been selected from the lectures of a NATO Advanced Study Institute held at Bad Lauterberg (Germany) in August 1995. Internationally well-known researchers in the field of mesoscopic quantum physics provide insight into the fundamental physics underlying the mesoscopic transport phenomena in structured semiconductor inversion layers. In addition, some of the most recent achievements are reported in contributed papers. The aim of the volume is not to give an overview over the field. Instead, emphasis is on interaction and correlation phenomena that turn out to be of increasing importance for the understanding of the phenomena in the quantum Hall regime, and in the transport through quantum dots. The present status of the quantum Hall experiments and theory is reviewed. As a "key example" for non-Fermi liquid behavior the Luttinger liquid is introduced, including some of the most recent developments. It is not only of importance for the fractional quantum Hall effect, but also for the understanding of transport in quantum wires. Furthermore, the chaotic and the correlation aspects of the transport in quantum dot systems are described. The status of the experimental work in the area of persistent currents in semiconductor systems is outlined. The construction of one of the first single-electron transistors is reported. The theoretical approach to mesoscopic transport, presently a most active area, is treated, and some aspects of time-dependent transport phenomena are also discussed.

Quantum Transport in Submicron Devices

Quantum Transport in Submicron Devices PDF Author: Wim Magnus
Publisher: Springer Science & Business Media
ISBN: 3642561330
Category : Technology & Engineering
Languages : en
Pages : 276

Get Book Here

Book Description
The aim of this book is to resolve the problem of electron and hole transport with a coherent and consistent theory that is relevant to the understanding of transport phenomena in submicron devices. Along the road, readers encounter landmarks in theoretical physics as the authors guide them through the strong and weak aspects of various hypotheses.

Binding and Scattering in Two-Dimensional Systems

Binding and Scattering in Two-Dimensional Systems PDF Author: J. Timothy Londergan
Publisher: Springer Science & Business Media
ISBN: 3540666842
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
This monograph is accessible to anyone with an undergraduate background in quantum mechanics, electromagnetism and some solid state physics. It describes in detail the properties of particles and fields in quasi-two-dimensional systems used to approximate realistic quantum heterostructures. Here the authors treat wires, i.e. they assume an infinite hard-wall potential for the system. They discuss bound states, the properties of transmission and reflection, conductance, etc. It is shown that the simple models developed in this book in detail are capable of understanding even complex physical phenomena. The methods are applied to optical states in photonic crystals, and similarities and differences between those and electronic states in quantum heterostructures and electromagnetic fields in waveguides are discussed.

Quantum Transport in Mesoscopic Systems

Quantum Transport in Mesoscopic Systems PDF Author: David Sánchez
Publisher: MDPI
ISBN: 3039433660
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Quantum Hall Effect in Perpendicular Two-dimensional Electron Systems

Quantum Hall Effect in Perpendicular Two-dimensional Electron Systems PDF Author: Lucia Steinke
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Get Book Here

Book Description