Author: Pieter Naaijkens
Publisher: Springer
ISBN: 331951458X
Category : Science
Languages : en
Pages : 184
Book Description
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemented in a quantum spin system. Several related cases are discussed, demonstrating the merits of the operator algebraic approach. Featuring representative worked-out examples and many exercises, this text is primarily targeted at graduate students and advanced undergraduates in theoretical physics or mathematics with a keen interest in mathematical physics. The material provides the necessary background and pointers to start exploring the recent literature. As such, it will also be useful for active researchers seeking a quick and comparatively self-contained introduction to the operator algebraic approach to quantum spin systems.
Quantum Spin Systems on Infinite Lattices
Author: Pieter Naaijkens
Publisher: Springer
ISBN: 331951458X
Category : Science
Languages : en
Pages : 184
Book Description
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemented in a quantum spin system. Several related cases are discussed, demonstrating the merits of the operator algebraic approach. Featuring representative worked-out examples and many exercises, this text is primarily targeted at graduate students and advanced undergraduates in theoretical physics or mathematics with a keen interest in mathematical physics. The material provides the necessary background and pointers to start exploring the recent literature. As such, it will also be useful for active researchers seeking a quick and comparatively self-contained introduction to the operator algebraic approach to quantum spin systems.
Publisher: Springer
ISBN: 331951458X
Category : Science
Languages : en
Pages : 184
Book Description
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemented in a quantum spin system. Several related cases are discussed, demonstrating the merits of the operator algebraic approach. Featuring representative worked-out examples and many exercises, this text is primarily targeted at graduate students and advanced undergraduates in theoretical physics or mathematics with a keen interest in mathematical physics. The material provides the necessary background and pointers to start exploring the recent literature. As such, it will also be useful for active researchers seeking a quick and comparatively self-contained introduction to the operator algebraic approach to quantum spin systems.
An Introduction to Quantum Spin Systems
Author: John B. Parkinson
Publisher: Springer Science & Business Media
ISBN: 3642132898
Category : Science
Languages : en
Pages : 159
Book Description
The topic of lattice quantum spin systems is a fascinating and by now well established branch of theoretical physics. Based on a set of lectures, this book has a level of detail missing from others, and guides the reader through the fundamentals of the field.
Publisher: Springer Science & Business Media
ISBN: 3642132898
Category : Science
Languages : en
Pages : 159
Book Description
The topic of lattice quantum spin systems is a fascinating and by now well established branch of theoretical physics. Based on a set of lectures, this book has a level of detail missing from others, and guides the reader through the fundamentals of the field.
Statistical Mechanics of Lattice Systems
Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643
Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643
Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Frustrated Spin Systems
Author: H. T. Diep
Publisher: World Scientific
ISBN: 9814440744
Category : Science
Languages : en
Pages : 644
Book Description
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."
Publisher: World Scientific
ISBN: 9814440744
Category : Science
Languages : en
Pages : 644
Book Description
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."
Magnetic Systems With Competing Interactions
Author: Hung-the Diep
Publisher: World Scientific
ISBN: 9814502197
Category : Science
Languages : en
Pages : 351
Book Description
This book is intended for postgraduate students as well as researchers in various areas of physics such as statistical physics, magnetism and materials sciences. The content of the book covers mainly frustrated spin systems with possible applications in domains where physical systems can be mapped into the spin language. Pedagogical effort has been made to make each chapter to be self-contained, comprehensible for researchers who are not really involved in the field. Basic methods are given in detail.
Publisher: World Scientific
ISBN: 9814502197
Category : Science
Languages : en
Pages : 351
Book Description
This book is intended for postgraduate students as well as researchers in various areas of physics such as statistical physics, magnetism and materials sciences. The content of the book covers mainly frustrated spin systems with possible applications in domains where physical systems can be mapped into the spin language. Pedagogical effort has been made to make each chapter to be self-contained, comprehensible for researchers who are not really involved in the field. Basic methods are given in detail.
Tensor Network Contractions
Author: Shi-Ju Ran
Publisher: Springer Nature
ISBN: 3030344894
Category : Science
Languages : en
Pages : 160
Book Description
Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.
Publisher: Springer Nature
ISBN: 3030344894
Category : Science
Languages : en
Pages : 160
Book Description
Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.
Quantum Magnetism
Author: Ulrich Schollwöck
Publisher: Springer
ISBN: 3540400664
Category : Science
Languages : en
Pages : 488
Book Description
Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.
Publisher: Springer
ISBN: 3540400664
Category : Science
Languages : en
Pages : 488
Book Description
Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.
Functional Integration and Quantum Physics
Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 0821835823
Category : Mathematics
Languages : en
Pages : 322
Book Description
Focuses on probabilistic foundations of the Feynman-Kac formula. Starting with main examples of Gaussian processes (the Brownian motion, the oscillatory process, and the Brownian bridge), this book presents four different proofs of the Feynman-Kac formula.
Publisher: American Mathematical Soc.
ISBN: 0821835823
Category : Mathematics
Languages : en
Pages : 322
Book Description
Focuses on probabilistic foundations of the Feynman-Kac formula. Starting with main examples of Gaussian processes (the Brownian motion, the oscillatory process, and the Brownian bridge), this book presents four different proofs of the Feynman-Kac formula.
Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems
Author: Laurens Vanderstraeten
Publisher: Springer
ISBN: 3319641913
Category : Science
Languages : en
Pages : 229
Book Description
This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.
Publisher: Springer
ISBN: 3319641913
Category : Science
Languages : en
Pages : 229
Book Description
This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.
Probability on Graphs
Author: Geoffrey Grimmett
Publisher: Cambridge University Press
ISBN: 1108542999
Category : Mathematics
Languages : en
Pages : 279
Book Description
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
Publisher: Cambridge University Press
ISBN: 1108542999
Category : Mathematics
Languages : en
Pages : 279
Book Description
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.