Author: Itamar Pitowsky
Publisher:
ISBN: 9783662137345
Category :
Languages : en
Pages : 224
Book Description
Quantum Probability - Quantum Logic
Author: Itamar Pitowsky
Publisher:
ISBN: 9783662137345
Category :
Languages : en
Pages : 224
Book Description
Publisher:
ISBN: 9783662137345
Category :
Languages : en
Pages : 224
Book Description
Quantum Logic in Algebraic Approach
Author: Miklós Rédei
Publisher: Springer Science & Business Media
ISBN: 9401590265
Category : Science
Languages : en
Pages : 244
Book Description
This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.
Publisher: Springer Science & Business Media
ISBN: 9401590265
Category : Science
Languages : en
Pages : 244
Book Description
This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.
Quantum Probability
Author: Stanley Gudder
Publisher: Academic Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism. Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles. The first two chapters survey the necessary background in quantum mechanics and probability theory and therefore the book is fairly self-contained, assuming only an elementary knowledge of linear operators in Hilbert space.
Publisher: Academic Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism. Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles. The first two chapters survey the necessary background in quantum mechanics and probability theory and therefore the book is fairly self-contained, assuming only an elementary knowledge of linear operators in Hilbert space.
A New Approach to Quantum Logic
Author: Kurt Engesser
Publisher:
ISBN: 9781904987536
Category : Quantum logic
Languages : en
Pages : 0
Book Description
This monograph is an investigation into certain new logical structures implicit in the formalism of quantum mechanics. Its message rests on two pillars. The first pillar is the dynamic view of propositions. Propositions are viewed as acting on states of the world and changing them rather than just being true or false in them. The second pillar is a logical enquiry into the nature of the states of a dynamic framework in general and thus the nature of physical states in particular. It turns out that a physical state viewed as a logical entity must encode other states and also itself. The main logical structures under investigation are that of an M-algebra and that of a holistic logic. In a sense to be made precise the latter structures reflect the 'holistic' nature of quantum mechanics.
Publisher:
ISBN: 9781904987536
Category : Quantum logic
Languages : en
Pages : 0
Book Description
This monograph is an investigation into certain new logical structures implicit in the formalism of quantum mechanics. Its message rests on two pillars. The first pillar is the dynamic view of propositions. Propositions are viewed as acting on states of the world and changing them rather than just being true or false in them. The second pillar is a logical enquiry into the nature of the states of a dynamic framework in general and thus the nature of physical states in particular. It turns out that a physical state viewed as a logical entity must encode other states and also itself. The main logical structures under investigation are that of an M-algebra and that of a holistic logic. In a sense to be made precise the latter structures reflect the 'holistic' nature of quantum mechanics.
The Logic of Quantum Mechanics: Volume 15
Author: Enrico G. Beltrametti
Publisher: Cambridge University Press
ISBN: 9780521168496
Category : Mathematics
Languages : en
Pages : 340
Book Description
This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.
Publisher: Cambridge University Press
ISBN: 9780521168496
Category : Mathematics
Languages : en
Pages : 340
Book Description
This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.
Probability in Physics
Author: Yemima Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 3642213286
Category : Science
Languages : en
Pages : 325
Book Description
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Publisher: Springer Science & Business Media
ISBN: 3642213286
Category : Science
Languages : en
Pages : 325
Book Description
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
The Road to Maxwell's Demon
Author: Meir Hemmo
Publisher: Cambridge University Press
ISBN: 1107019680
Category : Science
Languages : en
Pages : 341
Book Description
A philosophical perspective to statistical mechanics for graduate students and researchers in the foundations and philosophy of physics.
Publisher: Cambridge University Press
ISBN: 1107019680
Category : Science
Languages : en
Pages : 341
Book Description
A philosophical perspective to statistical mechanics for graduate students and researchers in the foundations and philosophy of physics.
John von Neumann and the Foundations of Quantum Physics
Author: Miklós Rédei
Publisher: Springer Science & Business Media
ISBN: 9401720126
Category : Science
Languages : en
Pages : 360
Book Description
John von Neumann (1903-1957) was undoubtedly one of the scientific geniuses of the 20th century. The main fields to which he contributed include various disciplines of pure and applied mathematics, mathematical and theoretical physics, logic, theoretical computer science, and computer architecture. Von Neumann was also actively involved in politics and science management and he had a major impact on US government decisions during, and especially after, the Second World War. There exist several popular books on his personality and various collections focusing on his achievements in mathematics, computer science, and economy. Strangely enough, to date no detailed appraisal of his seminal contributions to the mathematical foundations of quantum physics has appeared. Von Neumann's theory of measurement and his critique of hidden variables became the touchstone of most debates in the foundations of quantum mechanics. Today, his name also figures most prominently in the mathematically rigorous branches of contemporary quantum mechanics of large systems and quantum field theory. And finally - as one of his last lectures, published in this volume for the first time, shows - he considered the relation of quantum logic and quantum mechanical probability as his most important problem for the second half of the twentieth century. The present volume embraces both historical and systematic analyses of his methodology of mathematical physics, and of the various aspects of his work in the foundations of quantum physics, such as theory of measurement, quantum logic, and quantum mechanical entropy. The volume is rounded off by previously unpublished letters and lectures documenting von Neumann's thinking about quantum theory after his 1932 Mathematical Foundations of Quantum Mechanics. The general part of the Yearbook contains papers emerging from the Institute's annual lecture series and reviews of important publications of philosophy of science and its history.
Publisher: Springer Science & Business Media
ISBN: 9401720126
Category : Science
Languages : en
Pages : 360
Book Description
John von Neumann (1903-1957) was undoubtedly one of the scientific geniuses of the 20th century. The main fields to which he contributed include various disciplines of pure and applied mathematics, mathematical and theoretical physics, logic, theoretical computer science, and computer architecture. Von Neumann was also actively involved in politics and science management and he had a major impact on US government decisions during, and especially after, the Second World War. There exist several popular books on his personality and various collections focusing on his achievements in mathematics, computer science, and economy. Strangely enough, to date no detailed appraisal of his seminal contributions to the mathematical foundations of quantum physics has appeared. Von Neumann's theory of measurement and his critique of hidden variables became the touchstone of most debates in the foundations of quantum mechanics. Today, his name also figures most prominently in the mathematically rigorous branches of contemporary quantum mechanics of large systems and quantum field theory. And finally - as one of his last lectures, published in this volume for the first time, shows - he considered the relation of quantum logic and quantum mechanical probability as his most important problem for the second half of the twentieth century. The present volume embraces both historical and systematic analyses of his methodology of mathematical physics, and of the various aspects of his work in the foundations of quantum physics, such as theory of measurement, quantum logic, and quantum mechanical entropy. The volume is rounded off by previously unpublished letters and lectures documenting von Neumann's thinking about quantum theory after his 1932 Mathematical Foundations of Quantum Mechanics. The general part of the Yearbook contains papers emerging from the Institute's annual lecture series and reviews of important publications of philosophy of science and its history.
Probabilities in Physics
Author: Claus Beisbart
Publisher: Oxford University Press
ISBN: 0191618209
Category : Philosophy
Languages : en
Pages :
Book Description
Many results of modern physics—those of quantum mechanics, for instance—come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fields. In particular, the Bayesian and Humean views of probabilities and the varieties of Boltzmann's typicality approach are examined. The contributions on quantum mechanics discuss the special character of quantum correlations, the justification of the famous Born Rule, and the role of probabilities in a quantum field theoretic framework. Finally, the connections between probabilities and foundational issues in physics are explored. The Reversibility Paradox, the notion of entropy, and the ontology of quantum mechanics are discussed. Other essays consider Humean supervenience and the question whether the physical world is deterministic.
Publisher: Oxford University Press
ISBN: 0191618209
Category : Philosophy
Languages : en
Pages :
Book Description
Many results of modern physics—those of quantum mechanics, for instance—come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fields. In particular, the Bayesian and Humean views of probabilities and the varieties of Boltzmann's typicality approach are examined. The contributions on quantum mechanics discuss the special character of quantum correlations, the justification of the famous Born Rule, and the role of probabilities in a quantum field theoretic framework. Finally, the connections between probabilities and foundational issues in physics are explored. The Reversibility Paradox, the notion of entropy, and the ontology of quantum mechanics are discussed. Other essays consider Humean supervenience and the question whether the physical world is deterministic.
The Routledge Companion to Philosophy of Physics
Author: Eleanor Knox
Publisher: Routledge
ISBN: 1317227131
Category : Philosophy
Languages : en
Pages : 1223
Book Description
The Routledge Companion to Philosophy of Physics is a comprehensive and authoritative guide to the state of the art in the philosophy of physics. It comprisess 54 self-contained chapters written by leading philosophers of physics at both senior and junior levels, making it the most thorough and detailed volume of its type on the market – nearly every major perspective in the field is represented. The Companion’s 54 chapters are organized into 12 parts. The first seven parts cover all of the major physical theories investigated by philosophers of physics today, and the last five explore key themes that unite the study of these theories. I. Newtonian Mechanics II. Special Relativity III. General Relativity IV. Non-Relativistic Quantum Theory V. Quantum Field Theory VI. Quantum Gravity VII. Statistical Mechanics and Thermodynamics VIII. Explanation IX. Intertheoretic Relations X. Symmetries XI. Metaphysics XII. Cosmology The difficulty level of the chapters has been carefully pitched so as to offer both accessible summaries for those new to philosophy of physics and standard reference points for active researchers on the front lines. An introductory chapter by the editors maps out the field, and each part also begins with a short summary that places the individual chapters in context. The volume will be indispensable to any serious student or scholar of philosophy of physics.
Publisher: Routledge
ISBN: 1317227131
Category : Philosophy
Languages : en
Pages : 1223
Book Description
The Routledge Companion to Philosophy of Physics is a comprehensive and authoritative guide to the state of the art in the philosophy of physics. It comprisess 54 self-contained chapters written by leading philosophers of physics at both senior and junior levels, making it the most thorough and detailed volume of its type on the market – nearly every major perspective in the field is represented. The Companion’s 54 chapters are organized into 12 parts. The first seven parts cover all of the major physical theories investigated by philosophers of physics today, and the last five explore key themes that unite the study of these theories. I. Newtonian Mechanics II. Special Relativity III. General Relativity IV. Non-Relativistic Quantum Theory V. Quantum Field Theory VI. Quantum Gravity VII. Statistical Mechanics and Thermodynamics VIII. Explanation IX. Intertheoretic Relations X. Symmetries XI. Metaphysics XII. Cosmology The difficulty level of the chapters has been carefully pitched so as to offer both accessible summaries for those new to philosophy of physics and standard reference points for active researchers on the front lines. An introductory chapter by the editors maps out the field, and each part also begins with a short summary that places the individual chapters in context. The volume will be indispensable to any serious student or scholar of philosophy of physics.