Author: Roman Schmied
Publisher: Springer Nature
ISBN: 9811375887
Category : Science
Languages : en
Pages : 202
Book Description
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.
Using Mathematica for Quantum Mechanics
Author: Roman Schmied
Publisher: Springer Nature
ISBN: 9811375887
Category : Science
Languages : en
Pages : 202
Book Description
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.
Publisher: Springer Nature
ISBN: 9811375887
Category : Science
Languages : en
Pages : 202
Book Description
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.
Quantum Methods with Mathematica®
Author: James F. Feagin
Publisher: Springer Science & Business Media
ISBN: 9780387953656
Category : Science
Languages : en
Pages : 508
Book Description
Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.
Publisher: Springer Science & Business Media
ISBN: 9780387953656
Category : Science
Languages : en
Pages : 508
Book Description
Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Computer Algebra in Quantum Field Theory
Author: Carsten Schneider
Publisher: Springer Science & Business Media
ISBN: 3709116163
Category : Science
Languages : en
Pages : 422
Book Description
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.
Publisher: Springer Science & Business Media
ISBN: 3709116163
Category : Science
Languages : en
Pages : 422
Book Description
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.
Mathematica for Theoretical Physics
Author: Gerd Baumann
Publisher: Springer Science & Business Media
ISBN: 0387251138
Category : Science
Languages : en
Pages : 407
Book Description
Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user’s purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.
Publisher: Springer Science & Business Media
ISBN: 0387251138
Category : Science
Languages : en
Pages : 407
Book Description
Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user’s purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.
Mathematical Optics
Author: Vasudevan Lakshminarayanan
Publisher: CRC Press
ISBN: 1351832859
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Publisher: CRC Press
ISBN: 1351832859
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Quantum Mechanics for Mathematicians
Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410
Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410
Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Symmetry Theory in Molecular Physics with Mathematica
Author: William McClain
Publisher: Springer Science & Business Media
ISBN: 0387734708
Category : Science
Languages : en
Pages : 672
Book Description
Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.
Publisher: Springer Science & Business Media
ISBN: 0387734708
Category : Science
Languages : en
Pages : 672
Book Description
Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.
Approximation Methods in Quantum Mechanics
Author: Arkadiĭ Beĭnusovich Migdal
Publisher:
ISBN:
Category : Approximate computation
Languages : en
Pages : 168
Book Description
Dimensional and "model" approximations -- Various types of perturbation theory -- The quasiclassical approximation.
Publisher:
ISBN:
Category : Approximate computation
Languages : en
Pages : 168
Book Description
Dimensional and "model" approximations -- Various types of perturbation theory -- The quasiclassical approximation.
Quantum Mechanics Using Computer Algebra
Author: Willi-Hans Steeb
Publisher: World Scientific
ISBN: 9789810217709
Category : Science
Languages : en
Pages : 208
Book Description
Solving problems in quantum mechanics is an essential skill and research activity for scientists, engineers and others. Nowadays the labor of scientific computation has been greatly eased by the advent of computer algebra packages. These do not merely perform number-crunching tasks, but enable users to manipulate algebraic expressions and equations symbolically. For example, differentiation and integration can now be carried out algebraically by the computer.This book collects standard and advanced methods in quantum mechanics and implements them using REDUCE, a popular computer algebra package. Throughout, sample programs and their output have been displayed alongside explanatory text, making the book easy to follow. Selected problems have also been implemented using two other popular packages, MATHEMATICA and MAPLE, and in the object-oriented programming language C++.Besides standard quantum mechanical techniques, modern developments in quantum theory are also covered. These include Fermi and Bose Operators, coherent states, gauge theory and quantum groups. All the special functions relevant to quantum mechanics (Hermite, Chebyshev, Legendre and more) are implemented.The level of presentation is such that one can get a sound grasp of computational techniques early on in one's scientific education. A careful balance is struck between practical computation and the underlying mathematical concepts, making the book well-suited for use with quantum mechanics courses.
Publisher: World Scientific
ISBN: 9789810217709
Category : Science
Languages : en
Pages : 208
Book Description
Solving problems in quantum mechanics is an essential skill and research activity for scientists, engineers and others. Nowadays the labor of scientific computation has been greatly eased by the advent of computer algebra packages. These do not merely perform number-crunching tasks, but enable users to manipulate algebraic expressions and equations symbolically. For example, differentiation and integration can now be carried out algebraically by the computer.This book collects standard and advanced methods in quantum mechanics and implements them using REDUCE, a popular computer algebra package. Throughout, sample programs and their output have been displayed alongside explanatory text, making the book easy to follow. Selected problems have also been implemented using two other popular packages, MATHEMATICA and MAPLE, and in the object-oriented programming language C++.Besides standard quantum mechanical techniques, modern developments in quantum theory are also covered. These include Fermi and Bose Operators, coherent states, gauge theory and quantum groups. All the special functions relevant to quantum mechanics (Hermite, Chebyshev, Legendre and more) are implemented.The level of presentation is such that one can get a sound grasp of computational techniques early on in one's scientific education. A careful balance is struck between practical computation and the underlying mathematical concepts, making the book well-suited for use with quantum mechanics courses.