Quantum Machine Learning

Quantum Machine Learning PDF Author: Peter Wittek
Publisher: Academic Press
ISBN: 0128010991
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Quantum Machine Learning

Quantum Machine Learning PDF Author: Peter Wittek
Publisher: Academic Press
ISBN: 0128010991
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Schrodinger's Machines

Schrodinger's Machines PDF Author: Gerard J. Milburn
Publisher: W. H. Freeman
ISBN: 9780716731061
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
In his foreword to Schrödinger's Machines, Paul Davies writes, "The nineteenth century was known as the machine age, the twentieth century will go down in history as the information age. I believe the twenty-first century will be the quantum age." Perhaps the most successful scientific theory in history, quantum mechanics has already ushered in the information age with inventions like the transistor and the laser. In Schrödinger's Machines, renowned quantum physicist Gerard Milburn explores how our ever-increasing ability to manipulate atomic and subatomic processes is turning purely hypothetical situations and concepts (of a truly weird nature) into concrete, practical devices-- resulting in a complete transformation of our world view. Imagine the creation of machines the size of molecules, detectors sensitive enough to pick up the sound of a pin dropping on the other side of the earth, the fabrication of new and exotic materials, and extraordinarily powerful computers that can process information in many alternative realities simultaneously, creating a whole new type of mathematics. This isn't science fiction, but just some of the breathtaking possibilities offered by quantum technology over the next fifty years. Leaving the common sense of Newtonian machines far behind, Schrödinger's Machines is an advance preview of the strange new world ahead. Clearly presented, and with an acute awareness of recent advances in the field, it's indispensable reading for anyone interested in the future.

Machine Learning with Quantum Computers

Machine Learning with Quantum Computers PDF Author: Maria Schuld
Publisher: Springer Nature
ISBN: 3030830985
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.

Natural Computing: DNA, Quantum Bits, and the Future of Smart Machines

Natural Computing: DNA, Quantum Bits, and the Future of Smart Machines PDF Author: Dennis E. Shasha
Publisher: W. W. Norton & Company
ISBN: 0393336832
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Drawing on interviews with 15 leading scientists, the authors present an unexpected vision: the future of computing is a synthesis with nature.

A Practical Guide to Quantum Machine Learning and Quantum Optimization

A Practical Guide to Quantum Machine Learning and Quantum Optimization PDF Author: Elias F. Combarro
Publisher: Packt Publishing Ltd
ISBN: 1804618306
Category : Computers
Languages : en
Pages : 680

Get Book Here

Book Description
Work with fully explained algorithms and ready-to-use examples that can be run on quantum simulators and actual quantum computers with this comprehensive guide Key FeaturesGet a solid grasp of the principles behind quantum algorithms and optimization with minimal mathematical prerequisitesLearn the process of implementing the algorithms on simulators and actual quantum computersSolve real-world problems using practical examples of methodsBook Description This book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You'll be introduced to quantum computing using a hands-on approach with minimal prerequisites. You'll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that's ready to be run on quantum simulators and actual quantum computers. You'll also learn how to utilize programming frameworks such as IBM's Qiskit, Xanadu's PennyLane, and D-Wave's Leap. Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away. What you will learnReview the basics of quantum computingGain a solid understanding of modern quantum algorithmsUnderstand how to formulate optimization problems with QUBOSolve optimization problems with quantum annealing, QAOA, GAS, and VQEFind out how to create quantum machine learning modelsExplore how quantum support vector machines and quantum neural networks work using Qiskit and PennyLaneDiscover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interfaceWho this book is for This book is for professionals from a wide variety of backgrounds, including computer scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic knowledge of linear algebra and some programming skills (for instance, in Python) are assumed, although all mathematical prerequisites will be covered in the appendices.

Quantum Machine Learning

Quantum Machine Learning PDF Author: Claudio Conti
Publisher: Springer Nature
ISBN: 3031442261
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
This book presents a new way of thinking about quantum mechanics and machine learning by merging the two. Quantum mechanics and machine learning may seem theoretically disparate, but their link becomes clear through the density matrix operator which can be readily approximated by neural network models, permitting a formulation of quantum physics in which physical observables can be computed via neural networks. As well as demonstrating the natural affinity of quantum physics and machine learning, this viewpoint opens rich possibilities in terms of computation, efficient hardware, and scalability. One can also obtain trainable models to optimize applications and fine-tune theories, such as approximation of the ground state in many body systems, and boosting quantum circuits’ performance. The book begins with the introduction of programming tools and basic concepts of machine learning, with necessary background material from quantum mechanics and quantum information also provided. This enables the basic building blocks, neural network models for vacuum states, to be introduced. The highlights that follow include: non-classical state representations, with squeezers and beam splitters used to implement the primary layers for quantum computing; boson sampling with neural network models; an overview of available quantum computing platforms, their models, and their programming; and neural network models as a variational ansatz for many-body Hamiltonian ground states with applications to Ising machines and solitons. The book emphasizes coding, with many open source examples in Python and TensorFlow, while MATLAB and Mathematica routines clarify and validate proofs. This book is essential reading for graduate students and researchers who want to develop both the requisite physics and coding knowledge to understand the rich interplay of quantum mechanics and machine learning.

The Physics of Quantum Mechanics

The Physics of Quantum Mechanics PDF Author: James Binney
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408

Get Book Here

Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.

The Demon in the Machine

The Demon in the Machine PDF Author: Paul Davies
Publisher: Penguin UK
ISBN: 0241309603
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
'A gripping new drama in science ... if you want to understand how the concept of life is changing, read this' Professor Andrew Briggs, University of Oxford When Darwin set out to explain the origin of species, he made no attempt to answer the deeper question: what is life? For generations, scientists have struggled to make sense of this fundamental question. Life really does look like magic: even a humble bacterium accomplishes things so dazzling that no human engineer can match it. And yet, huge advances in molecular biology over the past few decades have served only to deepen the mystery. So can life be explained by known physics and chemistry, or do we need something fundamentally new? In this penetrating and wide-ranging new analysis, world-renowned physicist and science communicator Paul Davies searches for answers in a field so new and fast-moving that it lacks a name, a domain where computing, chemistry, quantum physics and nanotechnology intersect. At the heart of these diverse fields, Davies explains, is the concept of information: a quantity with the power to unify biology with physics, transform technology and medicine, and even to illuminate the age-old question of whether we are alone in the universe. From life's murky origins to the microscopic engines that run the cells of our bodies, The Demon in the Machine is a breath-taking journey across the landscape of physics, biology, logic and computing. Weaving together cancer and consciousness, two-headed worms and bird navigation, Davies reveals how biological organisms garner and process information to conjure order out of chaos, opening a window on the secret of life itself.

Supervised Learning with Quantum Computers

Supervised Learning with Quantum Computers PDF Author: Maria Schuld
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.

Quantum Machine Learning

Quantum Machine Learning PDF Author: Pethuru Raj
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111342271
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
Quantum computing has shown a potential to tackle specific types of problems, especially those involving a daunting number of variables, at an exponentially faster rate compared to classical computers. This volume focuses on quantum variants of machine learning algorithms, such as quantum neural networks, quantum reinforcement learning, quantum principal component analysis, quantum support vectors, quantum Boltzmann machines, and many more.