Quantum Interacting Particle Systems

Quantum Interacting Particle Systems PDF Author: Luigi Accardi
Publisher: World Scientific
ISBN: 9814487848
Category : Mathematics
Languages : en
Pages : 357

Get Book

Book Description
The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.

Quantum Interacting Particle Systems

Quantum Interacting Particle Systems PDF Author: Luigi Accardi
Publisher: World Scientific
ISBN: 9814487848
Category : Mathematics
Languages : en
Pages : 357

Get Book

Book Description
The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.

Quantum Interacting Particle Systems

Quantum Interacting Particle Systems PDF Author: Luigi Accardi
Publisher: World Scientific
ISBN: 9789812381040
Category : Science
Languages : en
Pages : 366

Get Book

Book Description
The dynamics of infinite classical lattice systems has been considered and has led to the study of the properties of ergodicity and convergence to equilibrium of a new class of Markov semigroups. Quantum analogues of these semigroups have also been considered. However, the problem of deriving these Markovian semigroups and, what is much more interesting, the associated stochastic flows, as limits of Hamiltonian systems, rather than postulating their form on a phenomenological basis, is essentially open both in the classical case and in the quantum case. This book presents a conjecture that, by coupling a quantum spin system in finite volume to a quantum field via a suitable interaction, applying the stochastic golden rule and taking the thermodynamic limit, one may obtain a class of quantum flows which, when restricted to an appropriate Abelian subalgebra, gives rise to the classical interacting particle systems studied in classical statistical mechanics.

Quantum Many-particle Systems

Quantum Many-particle Systems PDF Author: John W. Negele
Publisher: CRC Press
ISBN: 0429966474
Category : Science
Languages : en
Pages : 474

Get Book

Book Description
This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.

Quantum Theory of Many-Particle Systems

Quantum Theory of Many-Particle Systems PDF Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 048613475X
Category : Science
Languages : en
Pages : 640

Get Book

Book Description
Self-contained treatment of nonrelativistic many-particle systems discusses both formalism and applications in terms of ground-state (zero-temperature) formalism, finite-temperature formalism, canonical transformations, and applications to physical systems. 1971 edition.

Strongly Interacting Quantum Systems

Strongly Interacting Quantum Systems PDF Author: Manuel Valiente
Publisher:
ISBN: 9780750330879
Category :
Languages : en
Pages : 0

Get Book

Book Description


Optimal Control of interacting Quantum Particle Systems

Optimal Control of interacting Quantum Particle Systems PDF Author: Sebastian Rau
Publisher:
ISBN: 9783843911504
Category :
Languages : de
Pages : 0

Get Book

Book Description


Quantum Statistics of Charged Particle Systems

Quantum Statistics of Charged Particle Systems PDF Author: W.D. Kraeft
Publisher: Springer Science & Business Media
ISBN: 146132159X
Category : Science
Languages : en
Pages : 306

Get Book

Book Description
The year 1985 represents a special anniversary for people dealing with Ooulomb systems. 200 years ago, in 1785, Oharles Auguste de Ooulomb (1736-1806) found "Ooulomb's law" for the interaction force between charged particles. The authors want to dedicate this book to the honour of the great pioneer of electrophysics. Recent statistical mechanics is mainly restricted to systems of neutral particles. Except for a few monographs and survey articles (see, e. g., IOHIMARU, 1973, 1982; KUDRIN, 1974; KLIMONTOVIOH, 1975; EBELING, KRAEFT and KREMP, 1976, 1979; KALMAN and CARINI, 1978; BAUS and HANSEN, 1980; GILL, 1981, VELO and WIGHT MAN, 1981; MATSUBARA, 1982) the extended material on charged particle systems, which is now available thanks to the efforts of many workers in statistical mechanics, is widely dispersed in many original articles. It is the aim of this monograph to represent at least some part of the known results on charged particle systems from a unified point of view. Here the method of Green's functions turns out to be a powerful method especially to overcome the difficulties connected with the statistical physics of charged particle systems; some of them are . mentioned in the introduction. Here we can point, e.g., to the appearance of bound states in a medium and their role as new entities.

Relativistic Quantum Dynamics

Relativistic Quantum Dynamics PDF Author: Eugene Stefanovich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110493225
Category : Science
Languages : en
Pages : 241

Get Book

Book Description
In this third volume of three, quantum electrodynamics is formulated in the language of physical „dressed" particles. A theory where charged particles interact via instantaneous action-at-a-distance forces is constructed - without need for renormalization. This theory describes electromagnetic phenomena in terms of directly interacting charges, but in full accord with fundamental principles of relativity and causality. Contents Three ways to look at QFT Dressing What are advantages of dressed Hamiltonian? Coulomb potential and beyond Decays RQD in higher orders Classical electrodynamics Experimental support of RQD Particles and relativity Special theory of relativity Unitary dressing transformation Integral for decay law Coulomb scattering integral in fourth order Relativistic invariance of Coulomb–Darwin–Breit electrodynamics

Multi-scale Analysis for Random Quantum Systems with Interaction

Multi-scale Analysis for Random Quantum Systems with Interaction PDF Author: Victor Chulaevsky
Publisher: Springer Science & Business Media
ISBN: 1461482267
Category : Mathematics
Languages : en
Pages : 246

Get Book

Book Description
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theory a thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.

Interacting Many-particle Systems on General Compact Quantum Graphs

Interacting Many-particle Systems on General Compact Quantum Graphs PDF Author: Joachim Friedrich Kerner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book

Book Description