Quantum Groups, Quantum Categories and Quantum Field Theory

Quantum Groups, Quantum Categories and Quantum Field Theory PDF Author: Jürg Fröhlich
Publisher: Springer
ISBN: 3540476113
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

Quantum Groups, Quantum Categories and Quantum Field Theory

Quantum Groups, Quantum Categories and Quantum Field Theory PDF Author: Jürg Fröhlich
Publisher: Springer
ISBN: 3540476113
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

Quantum Groups

Quantum Groups PDF Author: Christian Kassel
Publisher: Springer Science & Business Media
ISBN: 1461207835
Category : Mathematics
Languages : en
Pages : 540

Get Book Here

Book Description
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Quantum Groups, Quantum Categories and Quantum Field Theory

Quantum Groups, Quantum Categories and Quantum Field Theory PDF Author: Jurg Frohlich
Publisher:
ISBN: 9783662185827
Category :
Languages : en
Pages : 440

Get Book Here

Book Description


Quantum Groups and Their Representations

Quantum Groups and Their Representations PDF Author: Anatoli Klimyk
Publisher: Springer Science & Business Media
ISBN: 3642608965
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.

Foundations of Quantum Group Theory

Foundations of Quantum Group Theory PDF Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 9780521648684
Category : Group theory
Languages : en
Pages : 668

Get Book Here

Book Description
A graduate level text which systematically lays out the foundations of Quantum Groups.

Quantum Group Symmetry And Q-tensor Algebras

Quantum Group Symmetry And Q-tensor Algebras PDF Author: Lawrence C Biedenharn
Publisher: World Scientific
ISBN: 9814500135
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics.

Quantum Invariants of Knots and 3-Manifolds

Quantum Invariants of Knots and 3-Manifolds PDF Author: Vladimir G. Turaev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110435225
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
Due to the strong appeal and wide use of this monograph, it is now available in its third revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. Contents: Invariants of graphs in Euclidean 3-space and of closed 3-manifolds Foundations of topological quantum field theory Three-dimensional topological quantum field theory Two-dimensional modular functors 6j-symbols Simplicial state sums on 3-manifolds Shadows of manifolds and state sums on shadows Constructions of modular categories

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations PDF Author: Peter Woit
Publisher: Springer
ISBN: 3319646125
Category : Science
Languages : en
Pages : 659

Get Book Here

Book Description
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Geometric and Topological Methods for Quantum Field Theory

Geometric and Topological Methods for Quantum Field Theory PDF Author: Sylvie Paycha
Publisher: American Mathematical Soc.
ISBN: 0821840622
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This volume, based on lectures and short communications at a summer school in Villa de Leyva, Colombia (July 2005), offers an introduction to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. It is aimed at graduate students in physics or mathematics who might want insight in the following topics (covered in five survey lectures): Anomalies and noncommutative geometry, Deformation quantisation and Poisson algebras, Topological quantum field theory and orbifolds. These lectures are followed by nine articles on various topics at the borderline of mathematics and physics ranging from quasicrystals to invariant instantons through black holes, and involving a number of mathematical tools borrowed from geometry, algebra and analysis.

Factorization Algebras in Quantum Field Theory

Factorization Algebras in Quantum Field Theory PDF Author: Kevin Costello
Publisher: Cambridge University Press
ISBN: 1107163102
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.