Author: Anthony Joseph
Publisher: Springer Science & Business Media
ISBN: 3642784003
Category : Mathematics
Languages : en
Pages : 394
Book Description
by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.
Quantum Groups and Their Primitive Ideals
On the Spectra of Quantum Groups
Author: Milen Yakimov
Publisher: American Mathematical Soc.
ISBN: 082189174X
Category : Mathematics
Languages : en
Pages : 104
Book Description
Joseph and Hodges-Levasseur (in the A case) described the spectra of all quantum function algebras on simple algebraic groups in terms of the centers of certain localizations of quotients of by torus invariant prime ideals, or equivalently in terms of orbits of finite groups. These centers were only known up to finite extensions. The author determines the centers explicitly under the general conditions that the deformation parameter is not a root of unity and without any restriction on the characteristic of the ground field. From it he deduces a more explicit description of all prime ideals of than the previously known ones and an explicit parametrization of .
Publisher: American Mathematical Soc.
ISBN: 082189174X
Category : Mathematics
Languages : en
Pages : 104
Book Description
Joseph and Hodges-Levasseur (in the A case) described the spectra of all quantum function algebras on simple algebraic groups in terms of the centers of certain localizations of quotients of by torus invariant prime ideals, or equivalently in terms of orbits of finite groups. These centers were only known up to finite extensions. The author determines the centers explicitly under the general conditions that the deformation parameter is not a root of unity and without any restriction on the characteristic of the ground field. From it he deduces a more explicit description of all prime ideals of than the previously known ones and an explicit parametrization of .
Quantum Groups and Lie Theory
Author: Andrew Pressley
Publisher: Cambridge University Press
ISBN: 9781139437028
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book comprises an overview of the material presented at the 1999 Durham Symposium on Quantum Groups and includes contributions from many of the world's leading figures in this area. It will be of interest to researchers and will also be useful as a reference text for graduate courses.
Publisher: Cambridge University Press
ISBN: 9781139437028
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book comprises an overview of the material presented at the 1999 Durham Symposium on Quantum Groups and includes contributions from many of the world's leading figures in this area. It will be of interest to researchers and will also be useful as a reference text for graduate courses.
Quantum Groups and Their Representations
Author: Anatoli Klimyk
Publisher: Springer Science & Business Media
ISBN: 3642608965
Category : Science
Languages : en
Pages : 568
Book Description
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.
Publisher: Springer Science & Business Media
ISBN: 3642608965
Category : Science
Languages : en
Pages : 568
Book Description
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.
Quantum Groups
Author: Benjamin Enriquez
Publisher: European Mathematical Society
ISBN: 9783037190470
Category : Mathematics
Languages : en
Pages : 148
Book Description
The volume starts with a lecture course by P. Etingof on tensor categories (notes by D. Calaque). This course is an introduction to tensor categories, leading to topics of recent research such as realizability of fusion rings, Ocneanu rigidity, module categories, weak Hopf algebras, Morita theory for tensor categories, lifting theory, categorical dimensions, Frobenius-Perron dimensions, and the classification of tensor categories. The remainder of the book consists of three detailed expositions on associators and the Vassiliev invariants of knots, classical and quantum integrable systems and elliptic algebras, and the groups of algebra automorphisms of quantum groups. The preface puts the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of the ongoing research in the domain of quantum groups, an important subject of current mathematical physics.
Publisher: European Mathematical Society
ISBN: 9783037190470
Category : Mathematics
Languages : en
Pages : 148
Book Description
The volume starts with a lecture course by P. Etingof on tensor categories (notes by D. Calaque). This course is an introduction to tensor categories, leading to topics of recent research such as realizability of fusion rings, Ocneanu rigidity, module categories, weak Hopf algebras, Morita theory for tensor categories, lifting theory, categorical dimensions, Frobenius-Perron dimensions, and the classification of tensor categories. The remainder of the book consists of three detailed expositions on associators and the Vassiliev invariants of knots, classical and quantum integrable systems and elliptic algebras, and the groups of algebra automorphisms of quantum groups. The preface puts the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of the ongoing research in the domain of quantum groups, an important subject of current mathematical physics.
Lectures on Algebraic Quantum Groups
Author: Ken Brown
Publisher: Birkhäuser
ISBN: 303488205X
Category : Mathematics
Languages : en
Pages : 339
Book Description
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
Publisher: Birkhäuser
ISBN: 303488205X
Category : Mathematics
Languages : en
Pages : 339
Book Description
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
Algebras of Functions on Quantum Groups: Part I
Author: Leonid I. Korogodski
Publisher: American Mathematical Soc.
ISBN: 0821803360
Category : Mathematics
Languages : en
Pages : 162
Book Description
The text is devoted to the study of algebras of functions on quantum groups. The book includes the theory of Poisson-Lie algebras (quasi-classical version of algebras of functions on quantum groups), a description of representations of algebras of functions and the theory of quantum Weyl groups. It can serve as a text for an introduction to the theory of quantum groups and is intended for graduate students and research mathematicians working in algebra, representation theory and mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 0821803360
Category : Mathematics
Languages : en
Pages : 162
Book Description
The text is devoted to the study of algebras of functions on quantum groups. The book includes the theory of Poisson-Lie algebras (quasi-classical version of algebras of functions on quantum groups), a description of representations of algebras of functions and the theory of quantum Weyl groups. It can serve as a text for an introduction to the theory of quantum groups and is intended for graduate students and research mathematicians working in algebra, representation theory and mathematical physics.
Trends in Ring Theory
Author: Vlastimil Dlab
Publisher: American Mathematical Soc.
ISBN: 9780821808498
Category : Rings (Algebra)
Languages : en
Pages : 284
Book Description
The Ring Theory Conference, held a the University of Miskolc, Hungary, successfully accomplished its two goals: to reflect contemporary trends in the subject area; and to offer a meeting place for a large number of Eastern European algebraists and their colleagues from around the world. Particular emphasis was placed on recent developments in the following four areas: representation theory, group algebras, PI algebras and general ring theory. This book presents 13 of the invited lectures.
Publisher: American Mathematical Soc.
ISBN: 9780821808498
Category : Rings (Algebra)
Languages : en
Pages : 284
Book Description
The Ring Theory Conference, held a the University of Miskolc, Hungary, successfully accomplished its two goals: to reflect contemporary trends in the subject area; and to offer a meeting place for a large number of Eastern European algebraists and their colleagues from around the world. Particular emphasis was placed on recent developments in the following four areas: representation theory, group algebras, PI algebras and general ring theory. This book presents 13 of the invited lectures.
Quantum Groups
Author: Vladimir K. Dobrev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427702
Category : Science
Languages : en
Pages : 408
Book Description
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427702
Category : Science
Languages : en
Pages : 408
Book Description
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
Finite Dimensional Algebras and Quantum Groups
Author: Bangming Deng
Publisher: American Mathematical Soc.
ISBN: 0821841866
Category : Mathematics
Languages : en
Pages : 790
Book Description
"The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak{gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature."--Publisher's website.
Publisher: American Mathematical Soc.
ISBN: 0821841866
Category : Mathematics
Languages : en
Pages : 790
Book Description
"The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak{gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature."--Publisher's website.