Quantum Computing

Quantum Computing PDF Author: Eleanor G. Rieffel
Publisher: MIT Press
ISBN: 0262015064
Category : Business & Economics
Languages : en
Pages : 389

Get Book Here

Book Description
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

Quantum Computing

Quantum Computing PDF Author: Eleanor G. Rieffel
Publisher: MIT Press
ISBN: 0262015064
Category : Business & Economics
Languages : en
Pages : 389

Get Book Here

Book Description
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

Quantum Computing for the Quantum Curious

Quantum Computing for the Quantum Curious PDF Author: Ciaran Hughes
Publisher: Springer Nature
ISBN: 3030616010
Category : Science
Languages : en
Pages : 159

Get Book Here

Book Description
This open access book makes quantum computing more accessible than ever before. A fast-growing field at the intersection of physics and computer science, quantum computing promises to have revolutionary capabilities far surpassing “classical” computation. Getting a grip on the science behind the hype can be tough: at its heart lies quantum mechanics, whose enigmatic concepts can be imposing for the novice. This classroom-tested textbook uses simple language, minimal math, and plenty of examples to explain the three key principles behind quantum computers: superposition, quantum measurement, and entanglement. It then goes on to explain how this quantum world opens up a whole new paradigm of computing. The book bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite. Each unit is broken down into sections labelled by difficulty level, allowing the course to be tailored to the student’s experience of math and abstract reasoning. Problem sets and simulation-based labs of various levels reinforce the concepts described in the text and give the reader hands-on experience running quantum programs. This book can thus be used at the high school level after the AP or IB exams, in an extracurricular club, or as an independent project resource to give students a taste of what quantum computing is really about. At the college level, it can be used as a supplementary text to enhance a variety of courses in science and computing, or as a self-study guide for students who want to get ahead. Additionally, readers in business, finance, or industry will find it a quick and useful primer on the science behind computing’s future.

Fundamentals of Quantum Computing

Fundamentals of Quantum Computing PDF Author: Venkateswaran Kasirajan
Publisher: Springer Nature
ISBN: 3030636895
Category : Computers
Languages : en
Pages : 463

Get Book Here

Book Description
This introductory book on quantum computing includes an emphasis on the development of algorithms. Appropriate for both university students as well as software developers interested in programming a quantum computer, this practical approach to modern quantum computing takes the reader through the required background and up to the latest developments. Beginning with introductory chapters on the required math and quantum mechanics, Fundamentals of Quantum Computing proceeds to describe four leading qubit modalities and explains the core principles of quantum computing in detail. Providing a step-by-step derivation of math and source code, some of the well-known quantum algorithms are explained in simple ways so the reader can try them either on IBM Q or Microsoft QDK. The book also includes a chapter on adiabatic quantum computing and modern concepts such as topological quantum computing and surface codes. Features: o Foundational chapters that build the necessary background on math and quantum mechanics. o Examples and illustrations throughout provide a practical approach to quantum programming with end-of-chapter exercises. o Detailed treatment on four leading qubit modalities -- trapped-ion, superconducting transmons, topological qubits, and quantum dots -- teaches how qubits work so that readers can understand how quantum computers work under the hood and devise efficient algorithms and error correction codes. Also introduces protected qubits - 0-π qubits, fluxon parity protected qubits, and charge-parity protected qubits. o Principles of quantum computing, such as quantum superposition principle, quantum entanglement, quantum teleportation, no-cloning theorem, quantum parallelism, and quantum interference are explained in detail. A dedicated chapter on quantum algorithm explores both oracle-based, and Quantum Fourier Transform-based algorithms in detail with step-by-step math and working code that runs on IBM QisKit and Microsoft QDK. Topics on EPR Paradox, Quantum Key Distribution protocols, Density Matrix formalism, and Stabilizer formalism are intriguing. While focusing on the universal gate model of quantum computing, this book also introduces adiabatic quantum computing and quantum annealing. This book includes a section on fault-tolerant quantum computing to make the discussions complete. The topics on Quantum Error Correction, Surface codes such as Toric code and Planar code, and protected qubits help explain how fault tolerance can be built at the system level.

Quantum Computing: An Applied Approach

Quantum Computing: An Applied Approach PDF Author: Jack D. Hidary
Publisher: Springer Nature
ISBN: 3030832740
Category : Science
Languages : en
Pages : 422

Get Book Here

Book Description
This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.

Frontiers of Engineering

Frontiers of Engineering PDF Author: National Academy of Engineering
Publisher: National Academies Press
ISBN: 0309487501
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description
This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.

An Introduction to Quantum Computing

An Introduction to Quantum Computing PDF Author: Phillip Kaye
Publisher: Oxford University Press
ISBN: 0198570007
Category : Computers
Languages : en
Pages : 287

Get Book Here

Book Description
The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Coherent atomic matter waves - Ondes de matiere coherentes

Coherent atomic matter waves - Ondes de matiere coherentes PDF Author: R. Kaiser
Publisher: Springer Science & Business Media
ISBN: 3540410473
Category : Science
Languages : en
Pages : 725

Get Book Here

Book Description
This book, devoted to the study of quantum effects in atomic systems, reviews the state of the art in the fields of Bose--Einstein condensation, quantum information processing, and the problems of propagation of matter waves in complex media. The specific topics include: theory and experiments in Bose--Einstein condensation, theory and experiments on decoherence phenomena in simple quantum systems and the connection to quantum measurement, atom interferometry, quantum computing, multiple scattering problems in atomic physics, quantum and nonlinear optics in a photonic band gap and quantum chaos and atomic physics. Pedagogical in style, the articles address PhD students as well as researchers.

Quantum Computing for Everyone

Quantum Computing for Everyone PDF Author: Chris Bernhardt
Publisher: MIT Press
ISBN: 0262350947
Category : Computers
Languages : en
Pages : 214

Get Book Here

Book Description
An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

Quantum Computing: Basic Concepts

Quantum Computing: Basic Concepts PDF Author: N.B. Singh
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 291

Get Book Here

Book Description
"Quantum Computing: Basic Concepts" is a beginner-friendly guide that introduces readers to the fascinating world of quantum computing. Written for absolute beginners, this book provides clear explanations of key concepts in quantum computing, such as qubits, superposition, and quantum gates, without assuming any prior knowledge of quantum mechanics or advanced mathematics. Through easy-to-understand language and practical examples, readers will gain a foundational understanding of quantum computing principles and explore the potential applications of this cutting-edge technology. Whether you're a curious novice or a seasoned enthusiast, this book offers an accessible entry point into the captivating realm of quantum computing.

Quantum Computing

Quantum Computing PDF Author: Prabhu TL
Publisher: NestFame Creations Pvt Ltd.
ISBN:
Category : Computers
Languages : en
Pages : 95

Get Book Here

Book Description
Quantum computers are machines that use the properties of quantum physics to store data and perform computations. This can be extremely advantageous for certain tasks where they could vastly outperform even our best supercomputers. Classical computers, which include smartphones and laptops, encode information in binary “bits” that can either be 0s or 1s. In a quantum computer, the basic unit of memory is a quantum bit or qubit. Qubits are made using physical systems, such as the spin of an electron or the orientation of a photon. These systems can be in many different arrangements all at once, a property known as quantum superposition. Qubits can also be inextricably linked together using a phenomenon called quantum entanglement. The result is that a series of qubits can represent different things simultaneously. For instance, eight bits is enough for a classical computer to represent any number between 0 and 255. But eight qubits is enough for a quantum computer to represent every number between 0 and 255 at the same time. A few hundred entangled qubits would be enough to represent more numbers than there are atoms in the universe. This is where quantum computers get their edge over classical ones. In situations where there are a large number of possible combinations, quantum computers can consider them simultaneously. Examples include trying to find the prime factors of a very large number or the best route between two places. However, there may also be plenty of situations where classical computers will still outperform quantum ones. So the computers of the future may be a combination of both these types. For now, quantum computers are highly sensitive: heat, electromagnetic fields and collisions with air molecules can cause a qubit to lose its quantum properties. This process, known as quantum decoherence, causes the system to crash, and it happens more quickly the more particles that are involved. Quantum computers need to protect qubits from external interference, either by physically isolating them, keeping them cool or zapping them with carefully controlled pulses of energy. Additional qubits are needed to correct for errors that creep into the system.