Author: Martin C. Gutzwiller
Publisher: Springer Science & Business Media
ISBN: 1461209838
Category : Mathematics
Languages : en
Pages : 445
Book Description
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
Chaos in Classical and Quantum Mechanics
Author: Martin C. Gutzwiller
Publisher: Springer Science & Business Media
ISBN: 1461209838
Category : Mathematics
Languages : en
Pages : 445
Book Description
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
Publisher: Springer Science & Business Media
ISBN: 1461209838
Category : Mathematics
Languages : en
Pages : 445
Book Description
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
Quantum Chaos
Author: Hans-Jürgen Stöckmann
Publisher: Cambridge University Press
ISBN: 0521592844
Category : Science
Languages : en
Pages : 386
Book Description
Discusses quantum chaos, an important area of nonlinear science.
Publisher: Cambridge University Press
ISBN: 0521592844
Category : Science
Languages : en
Pages : 386
Book Description
Discusses quantum chaos, an important area of nonlinear science.
Quantum Signatures of Chaos
Author: Fritz Haake
Publisher: Springer Science & Business Media
ISBN: 3662045060
Category : Science
Languages : en
Pages : 491
Book Description
This classic text provides an excellent introduction to a new and rapidly developing field of research. Now well established as a textbook in this rapidly developing field of research, the new edition is much enlarged and covers a host of new results.
Publisher: Springer Science & Business Media
ISBN: 3662045060
Category : Science
Languages : en
Pages : 491
Book Description
This classic text provides an excellent introduction to a new and rapidly developing field of research. Now well established as a textbook in this rapidly developing field of research, the new edition is much enlarged and covers a host of new results.
Nonlinear Dynamics and Quantum Chaos
Author: Sandro Wimberger
Publisher: Springer
ISBN: 331906343X
Category : Science
Languages : en
Pages : 215
Book Description
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Publisher: Springer
ISBN: 331906343X
Category : Science
Languages : en
Pages : 215
Book Description
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Quantum Chaos
Author: Katsuhiro Nakamura
Publisher: CUP Archive
ISBN: 9780521467469
Category : Mathematics
Languages : en
Pages : 228
Book Description
Past studies on chaos have been concerned with classical systems but this book is one of the first to deal with quantum chaos.
Publisher: CUP Archive
ISBN: 9780521467469
Category : Mathematics
Languages : en
Pages : 228
Book Description
Past studies on chaos have been concerned with classical systems but this book is one of the first to deal with quantum chaos.
The Transition to Chaos
Author: Linda Reichl
Publisher: Springer Science & Business Media
ISBN: 1475743521
Category : Science
Languages : en
Pages : 566
Book Description
resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].
Publisher: Springer Science & Business Media
ISBN: 1475743521
Category : Science
Languages : en
Pages : 566
Book Description
resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].
Instabilities and Chaos in Quantum Optics
Author: F.Tito Arecchi
Publisher: Springer Science & Business Media
ISBN: 364271708X
Category : Science
Languages : en
Pages : 260
Book Description
Of the variety of nonlinear dynamical systems that exhibit deterministic chaos optical systems both lasers and passive devices provide nearly ideal systems for quantitative investigation due to their simplicity both in construction and in the mathematics that describes them. In view of their growing technical application the understanding, control and possible exploitation of sources of instability in these systems has considerable practical importance. The aim of this volume is to provide a comprehensive coverage of the current understanding of optical instabilities through a series of reviews by leading researchers in the field. The book comprises nine chapters, five on active (laser) systems and four on passive optically bistable systems. Instabilities and chaos in single- (and multi-) mode lasers with homogeneously and broadened gain media are presented and the influence of an injected signal, loss modulation and also feedback of laser output on this behaviour is treated. Both electrically excited and optically pumped gas lasers are considered, and an analysis of dynamical instabilities in the emission from free electron lasers are presented. Instabilities in passive optically bistable systems include a detailed analysis of the global bifurcations and chaos in which transverse effects are accounted for. Experimental verification of degenerative pulsations and chaos in intrinsic bistable systems is described for various optical feedback systems in which atomic and molecular gases and semiconductors are used as the nonlinear media. Results for a hybrid bistable optical system are significant in providing an important test of current understanding of the dynamical behaviour of passive bistable systems.
Publisher: Springer Science & Business Media
ISBN: 364271708X
Category : Science
Languages : en
Pages : 260
Book Description
Of the variety of nonlinear dynamical systems that exhibit deterministic chaos optical systems both lasers and passive devices provide nearly ideal systems for quantitative investigation due to their simplicity both in construction and in the mathematics that describes them. In view of their growing technical application the understanding, control and possible exploitation of sources of instability in these systems has considerable practical importance. The aim of this volume is to provide a comprehensive coverage of the current understanding of optical instabilities through a series of reviews by leading researchers in the field. The book comprises nine chapters, five on active (laser) systems and four on passive optically bistable systems. Instabilities and chaos in single- (and multi-) mode lasers with homogeneously and broadened gain media are presented and the influence of an injected signal, loss modulation and also feedback of laser output on this behaviour is treated. Both electrically excited and optically pumped gas lasers are considered, and an analysis of dynamical instabilities in the emission from free electron lasers are presented. Instabilities in passive optically bistable systems include a detailed analysis of the global bifurcations and chaos in which transverse effects are accounted for. Experimental verification of degenerative pulsations and chaos in intrinsic bistable systems is described for various optical feedback systems in which atomic and molecular gases and semiconductors are used as the nonlinear media. Results for a hybrid bistable optical system are significant in providing an important test of current understanding of the dynamical behaviour of passive bistable systems.
Quantum Gods
Author: Victor J. Stenger
Publisher: Prometheus Books
ISBN: 1615920587
Category : Religion
Languages : en
Pages : 292
Book Description
Stenger alternates his discussions of popular spirituality with a survey of what the findings of 20th-century physics actually mean in laypersons terms--without equations.
Publisher: Prometheus Books
ISBN: 1615920587
Category : Religion
Languages : en
Pages : 292
Book Description
Stenger alternates his discussions of popular spirituality with a survey of what the findings of 20th-century physics actually mean in laypersons terms--without equations.
Quantum Chaos
Author: Giulio Casati
Publisher: Cambridge University Press
ISBN: 9780521432917
Category : Science
Languages : en
Pages : 700
Book Description
This book represents a comprehensive overview of our present understanding of chaotic behavior in a wide variety of quantum and semiclassical systems, and describes both experimental and theoretical investigations. A general introduction sets out the main features of chaos in quantum systems. Thereafter, in an authoritative collection of new or previously published papers, prominent scientists put forward their particular interpretations of quantum chaos with reference to a broad range of interesting physical systems.
Publisher: Cambridge University Press
ISBN: 9780521432917
Category : Science
Languages : en
Pages : 700
Book Description
This book represents a comprehensive overview of our present understanding of chaotic behavior in a wide variety of quantum and semiclassical systems, and describes both experimental and theoretical investigations. A general introduction sets out the main features of chaos in quantum systems. Thereafter, in an authoritative collection of new or previously published papers, prominent scientists put forward their particular interpretations of quantum chaos with reference to a broad range of interesting physical systems.
Electrical Control and Quantum Chaos with a High-Spin Nucleus in Silicon
Author: Serwan Asaad
Publisher: Springer Nature
ISBN: 3030834735
Category : Science
Languages : en
Pages : 212
Book Description
Nuclear spins are highly coherent quantum objects that were featured in early ideas and demonstrations of quantum information processing. In silicon, the high-fidelity coherent control of a single phosphorus (31-P) nuclear spin I=1/2 has demonstrated record-breaking coherence times, entanglement, and weak measurements. In this thesis, we demonstrate the coherent quantum control of a single antimony (123-Sb) donor atom, whose higher nuclear spin I = 7/2 corresponds to eight nuclear spin states. However, rather than conventional nuclear magnetic resonance (NMR), we employ nuclear electric resonance (NER) to drive nuclear spin transitions using localized electric fields produced within a silicon nanoelectronic device. This method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus, nor in a non-polar crystal such as silicon. We then present a realistic proposal to construct a chaotic driven top from the nuclear spin of 123-Sb. Signatures of chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors, hybrid spin-mechanical quantum systems, and quantum-computing elements using all-electrical controls.
Publisher: Springer Nature
ISBN: 3030834735
Category : Science
Languages : en
Pages : 212
Book Description
Nuclear spins are highly coherent quantum objects that were featured in early ideas and demonstrations of quantum information processing. In silicon, the high-fidelity coherent control of a single phosphorus (31-P) nuclear spin I=1/2 has demonstrated record-breaking coherence times, entanglement, and weak measurements. In this thesis, we demonstrate the coherent quantum control of a single antimony (123-Sb) donor atom, whose higher nuclear spin I = 7/2 corresponds to eight nuclear spin states. However, rather than conventional nuclear magnetic resonance (NMR), we employ nuclear electric resonance (NER) to drive nuclear spin transitions using localized electric fields produced within a silicon nanoelectronic device. This method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus, nor in a non-polar crystal such as silicon. We then present a realistic proposal to construct a chaotic driven top from the nuclear spin of 123-Sb. Signatures of chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors, hybrid spin-mechanical quantum systems, and quantum-computing elements using all-electrical controls.