Quantum Algebras and Poisson Geometry in Mathematical Physics

Quantum Algebras and Poisson Geometry in Mathematical Physics PDF Author: Mikhail Vladimirovich Karasev
Publisher: American Mathematical Soc.
ISBN: 9780821840405
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.

Quantum Algebras and Poisson Geometry in Mathematical Physics

Quantum Algebras and Poisson Geometry in Mathematical Physics PDF Author: Mikhail Vladimirovich Karasev
Publisher: American Mathematical Soc.
ISBN: 9780821840405
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.

Quantum Algebras and Poisson Geometry in Mathematical Physics

Quantum Algebras and Poisson Geometry in Mathematical Physics PDF Author: Mikhail Vladimirovich Karasev
Publisher:
ISBN: 9781470434274
Category :
Languages : en
Pages :

Get Book Here

Book Description
This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.

Poisson Geometry, Deformation Quantisation and Group Representations

Poisson Geometry, Deformation Quantisation and Group Representations PDF Author: Simone Gutt
Publisher: Cambridge University Press
ISBN: 9780521615051
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
An accessible introduction to Poisson geometry suitable for graduate students.

Cluster Algebras and Poisson Geometry

Cluster Algebras and Poisson Geometry PDF Author: Michael Gekhtman
Publisher: American Mathematical Soc.
ISBN: 0821849727
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
The first book devoted to cluster algebras, this work contains chapters on Poisson geometry and Schubert varieties; an introduction to cluster algebras and their main properties; and geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.

The Breadth of Symplectic and Poisson Geometry

The Breadth of Symplectic and Poisson Geometry PDF Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

From Geometry to Quantum Mechanics

From Geometry to Quantum Mechanics PDF Author: Yoshiaki Maeda
Publisher: Springer Science & Business Media
ISBN: 0817645306
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
* Invited articles in differential geometry and mathematical physics in honor of Hideki Omori * Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry * Will appeal to graduate students in mathematics and quantum mechanics; also a reference

Geometry, Topology, and Mathematical Physics

Geometry, Topology, and Mathematical Physics PDF Author: V. M. Buchstaber
Publisher: American Mathematical Soc.
ISBN: 9780821890769
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
This volume contains a selection of papers based on presentations given in 2006-2007 at the S. P. Novikov Seminar at the Steklov Mathematical Institute in Moscow. Novikov's diverse interests are reflected in the topics presented in the book. The articles address topics in geometry, topology, and mathematical physics. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


Mathematical Topics Between Classical and Quantum Mechanics

Mathematical Topics Between Classical and Quantum Mechanics PDF Author: Nicholas P. Landsman
Publisher: Springer Science & Business Media
ISBN: 146121680X
Category : Science
Languages : en
Pages : 547

Get Book Here

Book Description
This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.