Quantifying the Glacial Meltwater Component of Streamflow in the Middle Fork Nooksack River, Whatcom County, WA, Using a Distributed Hydrology Model

Quantifying the Glacial Meltwater Component of Streamflow in the Middle Fork Nooksack River, Whatcom County, WA, Using a Distributed Hydrology Model PDF Author: Carrie B. Donnell
Publisher:
ISBN:
Category : Meltwater
Languages : en
Pages : 206

Get Book Here

Book Description


Master's Theses Directories

Master's Theses Directories PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 312

Get Book Here

Book Description
"Education, arts and social sciences, natural and technical sciences in the United States and Canada".

Modeling the Contributions of Glacial Meltwater to Streamflow in Thunder Creek, North Cascades National Park, Washington

Modeling the Contributions of Glacial Meltwater to Streamflow in Thunder Creek, North Cascades National Park, Washington PDF Author: Jay William Chennault
Publisher:
ISBN:
Category : Meltwater
Languages : en
Pages : 156

Get Book Here

Book Description


Present-day and Future Contributions of Glacier Melt to the Upper Middle Fork Hood River

Present-day and Future Contributions of Glacier Melt to the Upper Middle Fork Hood River PDF Author: Jeff Phillippe
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 182

Get Book Here

Book Description
Glaciers are effective reservoirs because they moderate variations in runoff and supply reliable flow during drought periods. Thus, there needs to be a clear understanding of the influence of glacier runoff at both the basin and catchment scale. The objectives of this study were to quantify the late summer contributions of glacier melt to the Upper Middle Fork Hood River and to simulate potential impacts of climate change on late summer streamflow. The Upper Middle Fork Hood River catchment (50.6 km2) is located on the northeast flanks of Mount Hood Oregon. Discharge measurements and isotope samples were used to calculate glacier meltwater contributions to the entire catchment, which feeds into a major water diversion used for farmland irrigation. Data were collected over the period August 10 - September 7, 2007. This late summer period was selected because there is typically little rain and suspected high glacier melt contributions. Discharge measurements taken at glacier termini, show that just two of the mountains glaciers, Eliot and Coe, contributed 41% of the total surface water in the catchment. The Eliot Glacier contributed 87% of the total flow in the Eliot Creek, while the Coe Glacier supplied 31% of the runoff in Coe Creek. Isotopic analyses, which include the inputs of all other glacier surfaces in the catchment, show a total glacier contribution of 88% from the Eliot Glacier to the Eliot Creek, in excellent agreement with the streamflow measurements. Isotopes also showed an 88% contribution from the Coe Glacier to the Coe Creek, higher than the amount measured from streamflow. This latter discrepancy is likely due to undersampling of streamflow from the Coe Glacier. During the isotope measurement period, overall contributions of both Coe and Eliot Glaciers to the Upper Middle Fork Hood River were 62 - 74% of catchment discharge. A temperature index model was used to simulate projected impacts of glacier recession and warmer temperatures on streamflow. The Snowmelt Runoff Model (SRM) was chosen for this task because it has been shown to effectively model runoff in glacierized catchments where there are limited meteorological records. SRM was calibrated using the 2007 discharge records to quantify August - September glacier runoff in the Upper Middle Fork catchment under a variety of glacier and temperature scenarios. SRM simulations indicate that runoff from the catchment glaciers are highly sensitive to changes in glacial area, glacier debris-cover, and air temperature. Model simulations show that glacier recession has a greater effect on runoff than do projected temperature increases. Thus, even without warmer summer temperatures, glacier contributions to streamflow will decrease as long as the glacier continues to lose mass. Applying both current glacier recession rates and a 2°C temperature forcing, the model predicts a decrease of 31% of late summer glacier runoff by 2059, most of which is lost in August. This study suggests that glaciers currently play a significant hydrological role in the headwater catchments of the Hood River Basin at a time when water is needed most, and that these contributions are projected to diminish over time.

Modeling the Effects of Forecasted Climate Change and Glacier Recession on Late Summer Streamflow in the Upper Nooksack River Basin

Modeling the Effects of Forecasted Climate Change and Glacier Recession on Late Summer Streamflow in the Upper Nooksack River Basin PDF Author: Ryan D. Murphy
Publisher:
ISBN:
Category : Glaciers
Languages : en
Pages : 0

Get Book Here

Book Description
Like many watersheds in the North Cascades range of Washington State, USA, streamflow in the Nooksack River is strongly influenced by precipitation and snowmelt in the spring and glacial ice melt in the warmer summer months. With a maritime climate and high relief containing approximately 34km2 of glacial ice, the streamflow response in the Nooksack River basin is sensitive to increases in temperature. Climate projections from global climate models (GCMs) for the 21st Century indicate increases in temperature with variable changes to precipitation. The watershed is a valuable freshwater resource for regional municipalities, industry, and agriculture, and provides critical habitat for endangered salmon species. Thus, understanding the impacts of forecasted climate change is critical for water resources planning purposes. I apply publically available statistically derived 1/16 degree gridded surface climate data along with the Distributed Hydrology Soil Vegetation Model (DHSVM) with newly developed coupled dynamic glacier model to simulate hydrologic and glacial processes through the end of the 21st Century. Simulation results project median winter streamflows to more than double by 2075 due to more precipitation falling as rain rather than snow, and median summer flows to decrease by more than half with a general shift in peak snowmelt derived spring flows toward earlier in the spring. Glaciers are projected to retreat significantly with smaller glaciers disappearing entirely. Ice melt contribution to streamflow is likely to play an important role in sustaining summer baseflows in the Nooksack River. Glacier melt derived streamflow is projected to increase throughout the first half of the 21st century and decrease in the latter half after glacier ice volume decreases substantially.

Climate Change and Indigenous Peoples in the United States

Climate Change and Indigenous Peoples in the United States PDF Author: Julie Koppel Maldonado
Publisher: Springer
ISBN: 3319052667
Category : Science
Languages : en
Pages : 178

Get Book Here

Book Description
With a long history and deep connection to the Earth’s resources, indigenous peoples have an intimate understanding and ability to observe the impacts linked to climate change. Traditional ecological knowledge and tribal experience play a key role in developing future scientific solutions for adaptation to the impacts. The book explores climate-related issues for indigenous communities in the United States, including loss of traditional knowledge, forests and ecosystems, food security and traditional foods, as well as water, Arctic sea ice loss, permafrost thaw and relocation. The book also highlights how tribal communities and programs are responding to the changing environments. Fifty authors from tribal communities, academia, government agencies and NGOs contributed to the book. Previously published in Climatic Change, Volume 120, Issue 3, 2013.

WinXSPRO

WinXSPRO PDF Author: Thomas B. Hardy
Publisher:
ISBN:
Category : Channels (Hydraulic engineering)
Languages : en
Pages : 110

Get Book Here

Book Description
WinXSPRO is an interactive Windows software package designed to analyze stream channel cross section data for geometric, hydraulic, and sediment transport parameters. WinXSPRO was specifically developed for use in high-gradient streams (gradient > 0.01) and supports four alternative resistance equations for computing boundary roughness and resistance to flow. Cross section input data may be from standard cross section surveys using a rod and level or sag-tape procedures. WinXSPRO allows the user to subdivide the channel cross section into multiple sub-sections and has the ability to vary watersurface slopes with discharge to reflect natural conditions. Analysis options include developing stage-discharge relationships, evaluating changes in channel cross-sectional area, and computing sediment transport rates. Resource specialists can use the estimated stream-channel geometry cross section hydraulic characteristics and sediment transport output to assist with channel design and monitoring, instream flow analysis, the restoration of riparian areas, and the placement of instream structures.

Landslides

Landslides PDF Author: Roy C. Sidle
Publisher: American Geophysical Union
ISBN:
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Published by the American Geophysical Union as part of the Water Resources Monograph Series, Volume 18. Landslides are a constant in shaping our landscape. Whether by large episodic, or smaller chronic, mass movements, our mountains, hills, valleys, rivers, and streams bear evidence of change from landslides. Combined with anthropogenic factors, especially the development and settlement of unstable terrain, landslides (as natural processes) have become natural disasters. This book charts our understanding of landslide processes, prediction methods, and related land use issues. How and where do landslides initiate? What are the human and economic consequences? What hazard assessment and prediction methods are available, and how well do they work? How does land use, from timber harvesting and road building to urban and industrial development, affect landslide distribution in time and space? And what is the effect of land use and climate change on landslides? This book responds to such questions with: • Synopses of how various land uses and management activities influence landslide behavior • Analyses of earth surface processes that affect landslide frequency and extent • Examples of prediction techniques and methods of landslide hazard assessment, including scales of application • Discussion of landslide types and related costs and damages Those who study landslides, and those who deal with landslides, from onset to after-effects—including researchers, engineers, land managers, educators, students, and policy makers—will find this work a benchmark reference, now and for years to come.

Clovis Caches

Clovis Caches PDF Author: Bruce B. Huckell
Publisher: UNM Press
ISBN: 0826354831
Category : Social Science
Languages : en
Pages : 288

Get Book Here

Book Description
“A unique, significant contribution to our maturing studies of the Clovis era.”—Gary Haynes, author of The Early Settlement of North America: The Clovis Era The Paleoindian Clovis culture is known for distinctive stone and bone tools often associated with mammoth and bison remains, dating back some 13,500 years. While the term Clovis is known to every archaeology student, few books have detailed the specifics of Clovis archaeology. This collection of essays investigates caches of Clovis tools, many of which have only recently come to light. These caches are time capsules that allow archaeologists to examine Clovis tools at earlier stages of manufacture than the broken and discarded artifacts typically recovered from other sites. The studies comprising this volume treat methodological and theoretical issues including the recognition of Clovis caches, Clovis lithic technology, mobility, and land use.

Ground-water Resources of the Alma Area, Michigan

Ground-water Resources of the Alma Area, Michigan PDF Author: Kenneth Eugene Vanlier
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 80

Get Book Here

Book Description