Author: Institut des hautes études scientifiques (Paris, France)
Publisher: American Mathematical Soc.
ISBN: 0821852035
Category : Mathematics
Languages : en
Pages : 695
Book Description
The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.
Quanta of Maths
Author: Institut des hautes études scientifiques (Paris, France)
Publisher: American Mathematical Soc.
ISBN: 0821852035
Category : Mathematics
Languages : en
Pages : 695
Book Description
The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.
Publisher: American Mathematical Soc.
ISBN: 0821852035
Category : Mathematics
Languages : en
Pages : 695
Book Description
The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.
The Disc Embedding Theorem
Author: Stefan Behrens
Publisher: Oxford University Press
ISBN: 0192578383
Category : Mathematics
Languages : en
Pages : 492
Book Description
Based on Fields medal winning work of Michael Freedman, this book explores the disc embedding theorem for 4-dimensional manifolds. This theorem underpins virtually all our understanding of topological 4-manifolds. Most famously, this includes the 4-dimensional Poincaré conjecture in the topological category. The Disc Embedding Theorem contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided, as well as a stand-alone interlude that explains the disc embedding theorem's key role in all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. Additionally, the ramifications of the disc embedding theorem within the study of topological 4-manifolds, for example Frank Quinn's development of fundamental tools like transversality are broadly described. The book is written for mathematicians, within the subfield of topology, specifically interested in the study of 4-dimensional spaces, and includes numerous professionally rendered figures.
Publisher: Oxford University Press
ISBN: 0192578383
Category : Mathematics
Languages : en
Pages : 492
Book Description
Based on Fields medal winning work of Michael Freedman, this book explores the disc embedding theorem for 4-dimensional manifolds. This theorem underpins virtually all our understanding of topological 4-manifolds. Most famously, this includes the 4-dimensional Poincaré conjecture in the topological category. The Disc Embedding Theorem contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided, as well as a stand-alone interlude that explains the disc embedding theorem's key role in all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. Additionally, the ramifications of the disc embedding theorem within the study of topological 4-manifolds, for example Frank Quinn's development of fundamental tools like transversality are broadly described. The book is written for mathematicians, within the subfield of topology, specifically interested in the study of 4-dimensional spaces, and includes numerous professionally rendered figures.
The Prime Number Conspiracy
Author: Thomas Lin
Publisher: MIT Press
ISBN: 0262536358
Category : Mathematics
Languages : en
Pages : 331
Book Description
The Pulitzer Prize–winning magazine’s stories of mathematical explorations show that inspiration strikes haphazardly, revealing surprising solutions and exciting discoveries—with a foreword by James Gleick These stories from Quanta Magazine map the routes of mathematical exploration, showing readers how cutting-edge research is done, while illuminating the productive tension between conjecture and proof, theory and intuition. The stories show that, as James Gleick puts it in the foreword, “inspiration strikes willy-nilly.” One researcher thinks of quantum chaotic systems at a bus stop; another suddenly realizes a path to proving a theorem of number theory while in a friend's backyard; a statistician has a “bathroom sink epiphany” and discovers the key to solving the Gaussian correlation inequality. Readers of The Prime Number Conspiracy, says Quanta editor-in-chief Thomas Lin, are headed on “breathtaking intellectual journeys to the bleeding edge of discovery strapped to the narrative rocket of humanity's never-ending pursuit of knowledge.” Winner of the 2022 Pulitzer Prize for Explanatory Reporting, Quanta is the only popular publication that offers in-depth coverage of the latest breakthroughs in understanding our mathematical universe. It communicates mathematics by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves. Readers of this volume will learn that prime numbers have decided preferences about the final digits of the primes that immediately follow them (the “conspiracy” of the title); consider whether math is the universal language of nature (allowing for “a unified theory of randomness”); discover surprising solutions (including a pentagon tiling proof that solves a century-old math problem); ponder the limits of computation; measure infinity; and explore the eternal question “Is mathematics good for you?” Contributors Ariel Bleicher, Robbert Dijkgraaf, Kevin Hartnett, Erica Klarreich, Thomas Lin, John Pavlus, Siobhan Roberts, Natalie Wolchover Copublished with Quanta Magazine
Publisher: MIT Press
ISBN: 0262536358
Category : Mathematics
Languages : en
Pages : 331
Book Description
The Pulitzer Prize–winning magazine’s stories of mathematical explorations show that inspiration strikes haphazardly, revealing surprising solutions and exciting discoveries—with a foreword by James Gleick These stories from Quanta Magazine map the routes of mathematical exploration, showing readers how cutting-edge research is done, while illuminating the productive tension between conjecture and proof, theory and intuition. The stories show that, as James Gleick puts it in the foreword, “inspiration strikes willy-nilly.” One researcher thinks of quantum chaotic systems at a bus stop; another suddenly realizes a path to proving a theorem of number theory while in a friend's backyard; a statistician has a “bathroom sink epiphany” and discovers the key to solving the Gaussian correlation inequality. Readers of The Prime Number Conspiracy, says Quanta editor-in-chief Thomas Lin, are headed on “breathtaking intellectual journeys to the bleeding edge of discovery strapped to the narrative rocket of humanity's never-ending pursuit of knowledge.” Winner of the 2022 Pulitzer Prize for Explanatory Reporting, Quanta is the only popular publication that offers in-depth coverage of the latest breakthroughs in understanding our mathematical universe. It communicates mathematics by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves. Readers of this volume will learn that prime numbers have decided preferences about the final digits of the primes that immediately follow them (the “conspiracy” of the title); consider whether math is the universal language of nature (allowing for “a unified theory of randomness”); discover surprising solutions (including a pentagon tiling proof that solves a century-old math problem); ponder the limits of computation; measure infinity; and explore the eternal question “Is mathematics good for you?” Contributors Ariel Bleicher, Robbert Dijkgraaf, Kevin Hartnett, Erica Klarreich, Thomas Lin, John Pavlus, Siobhan Roberts, Natalie Wolchover Copublished with Quanta Magazine
Proofs from THE BOOK
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Quantum Questions
Author: Ken Wilber
Publisher: Shambhala Publications
ISBN: 0834822830
Category : Religion
Languages : en
Pages : 242
Book Description
The mystical writings of the world’s great physicists—now in one eye-opening volume that bridges the gap between science and religion Quantum Questions collects the mystical writings of each of the major physicists involved in the discovery of quantum physics and relativity, including Albert Einstein, Werner Heisenberg, and Max Planck. The selections are written in nontechnical language and will be of interest to scientists and nonscientists alike.
Publisher: Shambhala Publications
ISBN: 0834822830
Category : Religion
Languages : en
Pages : 242
Book Description
The mystical writings of the world’s great physicists—now in one eye-opening volume that bridges the gap between science and religion Quantum Questions collects the mystical writings of each of the major physicists involved in the discovery of quantum physics and relativity, including Albert Einstein, Werner Heisenberg, and Max Planck. The selections are written in nontechnical language and will be of interest to scientists and nonscientists alike.
Quantum Theory for Mathematicians
Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566
Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566
Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Mathematics for Quantum Mechanics
Author: John David Jackson
Publisher: Courier Corporation
ISBN: 048613881X
Category : Science
Languages : en
Pages : 114
Book Description
Advanced undergraduates and graduate students studying quantum mechanics will find this text a valuable guide to mathematical methods. Emphasizing the unity of a variety of different techniques, it is enduringly relevant to many physical systems outside the domain of quantum theory. Concise in its presentation, this text covers eigenvalue problems in classical physics, orthogonal functions and expansions, the Sturm-Liouville theory and linear operators on functions, and linear vector spaces. Appendixes offer useful information on Bessel functions and Legendre functions and spherical harmonics. This introductory text's teachings offer a solid foundation to students beginning a serious study of quantum mechanics.
Publisher: Courier Corporation
ISBN: 048613881X
Category : Science
Languages : en
Pages : 114
Book Description
Advanced undergraduates and graduate students studying quantum mechanics will find this text a valuable guide to mathematical methods. Emphasizing the unity of a variety of different techniques, it is enduringly relevant to many physical systems outside the domain of quantum theory. Concise in its presentation, this text covers eigenvalue problems in classical physics, orthogonal functions and expansions, the Sturm-Liouville theory and linear operators on functions, and linear vector spaces. Appendixes offer useful information on Bessel functions and Legendre functions and spherical harmonics. This introductory text's teachings offer a solid foundation to students beginning a serious study of quantum mechanics.
Love and Math
Author: Edward Frenkel
Publisher: Basic Books
ISBN: 0465069959
Category : Mathematics
Languages : en
Pages : 314
Book Description
An awesome, globe-spanning, and New York Times bestselling journey through the beauty and power of mathematics What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry. In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space. Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before. At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.
Publisher: Basic Books
ISBN: 0465069959
Category : Mathematics
Languages : en
Pages : 314
Book Description
An awesome, globe-spanning, and New York Times bestselling journey through the beauty and power of mathematics What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry. In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space. Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before. At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Quantum Mechanics and Experience
Author: David Z. ALBERT
Publisher: Harvard University Press
ISBN: 0674020146
Category : Science
Languages : en
Pages : 219
Book Description
This account of the foundations of quantum mechanics is an introduction accessible to anyone with high school mathematics, and provides a rigorous discussion of important recent advances in the understanding of quantum physics, including theories put forward by the author himself.
Publisher: Harvard University Press
ISBN: 0674020146
Category : Science
Languages : en
Pages : 219
Book Description
This account of the foundations of quantum mechanics is an introduction accessible to anyone with high school mathematics, and provides a rigorous discussion of important recent advances in the understanding of quantum physics, including theories put forward by the author himself.