Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721524709
Category :
Languages : en
Pages : 28
Book Description
Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems. Povinelli, Louis A. Glenn Research Center NASA/TM-2002-211908, E-13598, NAS 1.15:211908, Paper-17-5169
Pulse Detonation Engines for High Speed Flight
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721524709
Category :
Languages : en
Pages : 28
Book Description
Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems. Povinelli, Louis A. Glenn Research Center NASA/TM-2002-211908, E-13598, NAS 1.15:211908, Paper-17-5169
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721524709
Category :
Languages : en
Pages : 28
Book Description
Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems. Povinelli, Louis A. Glenn Research Center NASA/TM-2002-211908, E-13598, NAS 1.15:211908, Paper-17-5169
High-Speed Flight Propulsion Systems
Author: S. N. B. Murthy
Publisher: AIAA
ISBN: 9781600863912
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 558
Book Description
Annotation Leading researchers provide a cohesive treatment of the complex issues in high-speed propulsion, as well as introductions to the current capabilities for addressing several fundamental aspects of high-speed vehicle propulsion development. Includes more than 380 references, 290 figures and tables, and 185 equations.
Publisher: AIAA
ISBN: 9781600863912
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 558
Book Description
Annotation Leading researchers provide a cohesive treatment of the complex issues in high-speed propulsion, as well as introductions to the current capabilities for addressing several fundamental aspects of high-speed vehicle propulsion development. Includes more than 380 references, 290 figures and tables, and 185 equations.
Pulse Detonation Engine
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
What Is Pulse Detonation Engine A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next. Theoretically, a PDE can operate from subsonic up to a hypersonic flight speed of roughly Mach 5. An ideal PDE design can have a thermodynamic efficiency higher than other designs like turbojets and turbofans because a detonation wave rapidly compresses the mixture and adds heat at constant volume. Consequently, moving parts like compressor spools are not necessarily required in the engine, which could significantly reduce overall weight and cost. PDEs have been considered for propulsion since 1940. Key issues for further development include fast and efficient mixing of the fuel and oxidizer, the prevention of autoignition, and integration with an inlet and nozzle. To date, no practical PDE has been put into production, but several testbed engines have been built and one was successfully integrated into a low-speed demonstration aircraft that flew in sustained PDE powered flight in 2008. In June 2008, the Defense Advanced Research Projects Agency (DARPA) unveiled Blackswift, which was intended to use this technology to reach speeds of up to Mach 6 How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Pulse Detonation Engine Chapter 2: Nuclear Pulse Propulsion Chapter 3: Rotating Detonation Engine Chapter 4: AIMStar Chapter 5: Antimatter-catalyzed nuclear pulse propulsion Chapter 6: Antimatter rocket Chapter 7: Nuclear electric rocket Chapter 8: Nuclear power in space Chapter 9: Nuclear propulsion Chapter 10: Nuclear thermal rocket Chapter 11: Project Pluto Chapter 12: Fission-fragment rocket (II) Answering the public top questions about pulse detonation engine. (III) Real world examples for the usage of pulse detonation engine in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technology in each industry to have 360-degree full understanding of pulse detonation engine' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of pulse detonation engine.
Publisher: One Billion Knowledgeable
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
What Is Pulse Detonation Engine A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next. Theoretically, a PDE can operate from subsonic up to a hypersonic flight speed of roughly Mach 5. An ideal PDE design can have a thermodynamic efficiency higher than other designs like turbojets and turbofans because a detonation wave rapidly compresses the mixture and adds heat at constant volume. Consequently, moving parts like compressor spools are not necessarily required in the engine, which could significantly reduce overall weight and cost. PDEs have been considered for propulsion since 1940. Key issues for further development include fast and efficient mixing of the fuel and oxidizer, the prevention of autoignition, and integration with an inlet and nozzle. To date, no practical PDE has been put into production, but several testbed engines have been built and one was successfully integrated into a low-speed demonstration aircraft that flew in sustained PDE powered flight in 2008. In June 2008, the Defense Advanced Research Projects Agency (DARPA) unveiled Blackswift, which was intended to use this technology to reach speeds of up to Mach 6 How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Pulse Detonation Engine Chapter 2: Nuclear Pulse Propulsion Chapter 3: Rotating Detonation Engine Chapter 4: AIMStar Chapter 5: Antimatter-catalyzed nuclear pulse propulsion Chapter 6: Antimatter rocket Chapter 7: Nuclear electric rocket Chapter 8: Nuclear power in space Chapter 9: Nuclear propulsion Chapter 10: Nuclear thermal rocket Chapter 11: Project Pluto Chapter 12: Fission-fragment rocket (II) Answering the public top questions about pulse detonation engine. (III) Real world examples for the usage of pulse detonation engine in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technology in each industry to have 360-degree full understanding of pulse detonation engine' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of pulse detonation engine.
Fundamentals of Aircraft and Rocket Propulsion
Author: Ahmed F. El-Sayed
Publisher: Springer
ISBN: 1447167961
Category : Technology & Engineering
Languages : en
Pages : 1025
Book Description
This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.
Publisher: Springer
ISBN: 1447167961
Category : Technology & Engineering
Languages : en
Pages : 1025
Book Description
This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.
Powered Flight
Author: David R. Greatrix
Publisher: Springer Science & Business Media
ISBN: 1447124847
Category : Technology & Engineering
Languages : en
Pages : 531
Book Description
Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.
Publisher: Springer Science & Business Media
ISBN: 1447124847
Category : Technology & Engineering
Languages : en
Pages : 531
Book Description
Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.
Sustainable Aviation
Author: T. Hikmet Karakoc
Publisher: Springer
ISBN: 3030141950
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
This book provides readers with a basic understanding of the concepts and methodologies of sustainable aviation.The book is divided into three sections : basic principles the airport side, and the aircraft side. In-depth chapters discuss the key elements of sustainable aviation and provide complete coverage of essential topics including airport, energy, and noise management along with novel technologies, standards and a review of the current literature on green airports, sustainable aircraft design, biodiversity management, and alternative fuels. Engineers, researchers and students will find the fundamental approach useful and will benefit from the many engineering examples and solutions provided.
Publisher: Springer
ISBN: 3030141950
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
This book provides readers with a basic understanding of the concepts and methodologies of sustainable aviation.The book is divided into three sections : basic principles the airport side, and the aircraft side. In-depth chapters discuss the key elements of sustainable aviation and provide complete coverage of essential topics including airport, energy, and noise management along with novel technologies, standards and a review of the current literature on green airports, sustainable aircraft design, biodiversity management, and alternative fuels. Engineers, researchers and students will find the fundamental approach useful and will benefit from the many engineering examples and solutions provided.
Developments In High-Speed Vehicle Propulsion Systems
Author: S. N. B. Murthy
Publisher: AIAA
ISBN: 9781600864216
Category : High-speed aeronautics
Languages : en
Pages : 716
Book Description
Annotation There have been impressive achievements in the last few years in the technologies associated with turboramjets and other combined cycle engines. These technologies, including their thermal management and integration with the vehicle, are the principal concerns of this volume. Drawing on the expertise of international engineers and researchers in the field of high-speed vehicle propulsion systems, these articles, written by experts from the United States, Russia, Germany, Japan, Belgium, and Israel, highlight developments in the industry.
Publisher: AIAA
ISBN: 9781600864216
Category : High-speed aeronautics
Languages : en
Pages : 716
Book Description
Annotation There have been impressive achievements in the last few years in the technologies associated with turboramjets and other combined cycle engines. These technologies, including their thermal management and integration with the vehicle, are the principal concerns of this volume. Drawing on the expertise of international engineers and researchers in the field of high-speed vehicle propulsion systems, these articles, written by experts from the United States, Russia, Germany, Japan, Belgium, and Israel, highlight developments in the industry.
Shock Waves
Author: Zonglin Jiang
Publisher: Springer Science & Business Media
ISBN: 3540270094
Category : Science
Languages : en
Pages : 1346
Book Description
The 24th International Symposium on Shock Waves (ISSW24) was held at the Beijing Friendship Hotel during July 11-16, 2004, in Beijing. It was a great pleasure for the Local Organizing Committee to organize the ISSW in China for the first time, because forty-seven years have passed since the First Shock Tube Symposium was held in 1957 at Albuquerque. The ISSW24 had to be postponed for one year because of the SARS outbreak in Beijing shortly before the Symposium was scheduled to be held in 2003, but it has achieved success due to the continuous support and kind understanding from all the delegates. It is very heart-warming to have had such an experience and I am very happy to have served as chairman for the Symposium. I would like to thank all for the contributions and help that they have given us over the past three years, without which we would not have had the Symposium. A total of 460 abstracts were submitted to the ISSW24. Each of the abstracts was evaluated by three members of the Scientific Review Committee and the decision on acceptance wasmade based on the reviewers' reports. 195oral papers,including 9plenary lectures, wereaccepted to be presented in three parallel sessions, and 135poster papers in three dedicated poster sessions. Topics discussed in these papers cover all aspects ofshock wave research.
Publisher: Springer Science & Business Media
ISBN: 3540270094
Category : Science
Languages : en
Pages : 1346
Book Description
The 24th International Symposium on Shock Waves (ISSW24) was held at the Beijing Friendship Hotel during July 11-16, 2004, in Beijing. It was a great pleasure for the Local Organizing Committee to organize the ISSW in China for the first time, because forty-seven years have passed since the First Shock Tube Symposium was held in 1957 at Albuquerque. The ISSW24 had to be postponed for one year because of the SARS outbreak in Beijing shortly before the Symposium was scheduled to be held in 2003, but it has achieved success due to the continuous support and kind understanding from all the delegates. It is very heart-warming to have had such an experience and I am very happy to have served as chairman for the Symposium. I would like to thank all for the contributions and help that they have given us over the past three years, without which we would not have had the Symposium. A total of 460 abstracts were submitted to the ISSW24. Each of the abstracts was evaluated by three members of the Scientific Review Committee and the decision on acceptance wasmade based on the reviewers' reports. 195oral papers,including 9plenary lectures, wereaccepted to be presented in three parallel sessions, and 135poster papers in three dedicated poster sessions. Topics discussed in these papers cover all aspects ofshock wave research.
Aircraft Propulsion and Gas Turbine Engines
Author: Ahmed F. El-Sayed
Publisher: CRC Press
ISBN: 1466595183
Category : Science
Languages : en
Pages : 1524
Book Description
Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book’s first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text’s coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.
Publisher: CRC Press
ISBN: 1466595183
Category : Science
Languages : en
Pages : 1524
Book Description
Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book’s first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text’s coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.
Aircraft Propulsion
Author: Saeed Farokhi
Publisher: John Wiley & Sons
ISBN: 1119718643
Category : Technology & Engineering
Languages : en
Pages : 1045
Book Description
Explore the latest edition of a leading resource on sustainable aviation, alternative jet fuels, and new propulsion systems The newly revised Third Edition of Aircraft Propulsion delivers a comprehensive update to the successful Second Edition with a renewed focus on the integration of sustainable aviation concepts. The book tackles the impact of aviation on the environment at the engine component level, as well as the role of propulsion system integration on fuel burn. It also discusses combustion emissions, including greenhouse gases, carbon monoxide, unburned hydrocarbons (UHC), and oxides of nitrogen (NOx). Alternative jet fuels, like second generation biofuels and hydrogen, are presented. The distinguished author covers aviation noise from airframe to engine and its impact on community noise in landing and takeoff cycles. The book includes promising new technologies for propulsion and power, like the ultra-high bypass (UHB) turbofan and hybrid-electric and electric propulsion systems. Readers will also benefit from the inclusion of discussions of unsteady propulsion systems in wave-rotor combustion and pulse-detonation engines, as well as: A thorough introduction to the history of the airbreathing jet engine, including innovations in aircraft gas turbine engines, new engine concepts, and new vehicles An exploration of compressible flow with friction and heat, including a brief review of thermodynamics, isentropic process and flow, conservation principles, and Mach numbers A review of engine thrust and performance parameters, including installed thrust, rocket thrust, and modern engine architecture A discussion of gas turbine engine cycle analysis Perfect for aerospace and mechanical engineering students in the United States and overseas, Aircraft Propulsion will also earn a place in the libraries of practicing engineers in the aerospace and green engineering sectors seeking the latest up to date resource on sustainable aviation technologies.
Publisher: John Wiley & Sons
ISBN: 1119718643
Category : Technology & Engineering
Languages : en
Pages : 1045
Book Description
Explore the latest edition of a leading resource on sustainable aviation, alternative jet fuels, and new propulsion systems The newly revised Third Edition of Aircraft Propulsion delivers a comprehensive update to the successful Second Edition with a renewed focus on the integration of sustainable aviation concepts. The book tackles the impact of aviation on the environment at the engine component level, as well as the role of propulsion system integration on fuel burn. It also discusses combustion emissions, including greenhouse gases, carbon monoxide, unburned hydrocarbons (UHC), and oxides of nitrogen (NOx). Alternative jet fuels, like second generation biofuels and hydrogen, are presented. The distinguished author covers aviation noise from airframe to engine and its impact on community noise in landing and takeoff cycles. The book includes promising new technologies for propulsion and power, like the ultra-high bypass (UHB) turbofan and hybrid-electric and electric propulsion systems. Readers will also benefit from the inclusion of discussions of unsteady propulsion systems in wave-rotor combustion and pulse-detonation engines, as well as: A thorough introduction to the history of the airbreathing jet engine, including innovations in aircraft gas turbine engines, new engine concepts, and new vehicles An exploration of compressible flow with friction and heat, including a brief review of thermodynamics, isentropic process and flow, conservation principles, and Mach numbers A review of engine thrust and performance parameters, including installed thrust, rocket thrust, and modern engine architecture A discussion of gas turbine engine cycle analysis Perfect for aerospace and mechanical engineering students in the United States and overseas, Aircraft Propulsion will also earn a place in the libraries of practicing engineers in the aerospace and green engineering sectors seeking the latest up to date resource on sustainable aviation technologies.