Author: Andre Unterberger
Publisher: CRC Press
ISBN: 9780849378737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.
Pseudodifferential Analysis on Symmetric Cones
Author: Andre Unterberger
Publisher: CRC Press
ISBN: 9780849378737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.
Publisher: CRC Press
ISBN: 9780849378737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.
Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi
Author: André Unterberger
Publisher: Birkhäuser
ISBN: 3034879784
Category : Mathematics
Languages : en
Pages : 250
Book Description
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2002. The subject of this book is the study of automorphic distributions, by which is meant distributions on R2 invariant under the linear action of SL(2,Z), and of the operators associated with such distributions under the Weyl rule of symbolic calculus. Researchers and postgraduates interested in pseudodifferential analyis, the theory of non-holomorphic modular forms, and symbolic calculi will benefit from the clear exposition and new results and insights.
Publisher: Birkhäuser
ISBN: 3034879784
Category : Mathematics
Languages : en
Pages : 250
Book Description
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2002. The subject of this book is the study of automorphic distributions, by which is meant distributions on R2 invariant under the linear action of SL(2,Z), and of the operators associated with such distributions under the Weyl rule of symbolic calculus. Researchers and postgraduates interested in pseudodifferential analyis, the theory of non-holomorphic modular forms, and symbolic calculi will benefit from the clear exposition and new results and insights.
Multivariable Operator Theory
Author: Raúl E. Curto
Publisher: American Mathematical Soc.
ISBN: 0821802984
Category : Mathematics
Languages : en
Pages : 396
Book Description
This is a collection of papers presented at a conference on multivariable operator theory. The articles contain contributions to a variety of areas and topics which may be viewed as forming an emerging new subject. This subject involves the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables. This collection will spur further discussion among the different research groups.
Publisher: American Mathematical Soc.
ISBN: 0821802984
Category : Mathematics
Languages : en
Pages : 396
Book Description
This is a collection of papers presented at a conference on multivariable operator theory. The articles contain contributions to a variety of areas and topics which may be viewed as forming an emerging new subject. This subject involves the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables. This collection will spur further discussion among the different research groups.
Modern Differential Geometry of Curves and Surfaces with Mathematica
Author: Elsa Abbena
Publisher: CRC Press
ISBN: 142001031X
Category : Mathematics
Languages : en
Pages : 1011
Book Description
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Publisher: CRC Press
ISBN: 142001031X
Category : Mathematics
Languages : en
Pages : 1011
Book Description
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Invariance Theory
Author: Peter B. Gilkey
Publisher: CRC Press
ISBN: 1351436422
Category : Mathematics
Languages : en
Pages : 534
Book Description
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The author uses invariance theory to identify the integrand of the index theorem for classical elliptic complexes with the invariants of the heat equation.
Publisher: CRC Press
ISBN: 1351436422
Category : Mathematics
Languages : en
Pages : 534
Book Description
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The author uses invariance theory to identify the integrand of the index theorem for classical elliptic complexes with the invariants of the heat equation.
Separation of Variables for Partial Differential Equations
Author: George Cain
Publisher: CRC Press
ISBN: 9781584884200
Category : Mathematics
Languages : en
Pages : 306
Book Description
Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. Beyond the usual model problems, the presentation includes a number of realistic applications that illustrate the power and usefulness of the ideas behind these techniques. This complete, self-contained book includes numerous exercises and error estimates, as well as a rigorous approximation and computational tool.
Publisher: CRC Press
ISBN: 9781584884200
Category : Mathematics
Languages : en
Pages : 306
Book Description
Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. Beyond the usual model problems, the presentation includes a number of realistic applications that illustrate the power and usefulness of the ideas behind these techniques. This complete, self-contained book includes numerous exercises and error estimates, as well as a rigorous approximation and computational tool.
Asymptotic Formulae in Spectral Geometry
Author: Peter B. Gilkey
Publisher: CRC Press
ISBN: 1135440743
Category : Mathematics
Languages : en
Pages : 315
Book Description
A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers, mathematical physicists, and analysts alike will undoubtedly find this book to be the definitive book on the subject
Publisher: CRC Press
ISBN: 1135440743
Category : Mathematics
Languages : en
Pages : 315
Book Description
A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers, mathematical physicists, and analysts alike will undoubtedly find this book to be the definitive book on the subject
Differential Geometry and Topology
Author: Keith Burns
Publisher: CRC Press
ISBN: 1420057537
Category : Mathematics
Languages : en
Pages : 403
Book Description
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics
Publisher: CRC Press
ISBN: 1420057537
Category : Mathematics
Languages : en
Pages : 403
Book Description
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics
An Introduction to Quasigroups and Their Representations
Author: Jonathan D. H. Smith
Publisher: CRC Press
ISBN: 1420010638
Category : Mathematics
Languages : en
Pages : 353
Book Description
Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory,
Publisher: CRC Press
ISBN: 1420010638
Category : Mathematics
Languages : en
Pages : 353
Book Description
Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory,
Dynamical Systems
Author: Clark Robinson
Publisher: CRC Press
ISBN: 1482227878
Category : Mathematics
Languages : en
Pages : 522
Book Description
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student
Publisher: CRC Press
ISBN: 1482227878
Category : Mathematics
Languages : en
Pages : 522
Book Description
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student