Protein Self-Assembly

Protein Self-Assembly PDF Author: Jennifer J. McManus
Publisher: Humana
ISBN: 9781493996803
Category : Science
Languages : en
Pages : 266

Get Book

Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Protein Self-Assembly

Protein Self-Assembly PDF Author: Jennifer J. McManus
Publisher: Humana
ISBN: 9781493996803
Category : Science
Languages : en
Pages : 266

Get Book

Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Protein Self-Assembly

Protein Self-Assembly PDF Author: Jennifer J. McManus
Publisher: Humana
ISBN: 9781493996773
Category : Science
Languages : en
Pages : 0

Get Book

Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Protein-Nanoparticle Interactions

Protein-Nanoparticle Interactions PDF Author: Masoud Rahman
Publisher: Springer Science & Business Media
ISBN: 3642375553
Category : Science
Languages : en
Pages : 95

Get Book

Book Description
In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.

Artificial Protein and Peptide Nanofibers

Artificial Protein and Peptide Nanofibers PDF Author: Gang Wei
Publisher: Woodhead Publishing
ISBN: 0081028512
Category : Technology & Engineering
Languages : en
Pages : 504

Get Book

Book Description
Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications provides comprehensive knowledge of the preparation, modification and applications of protein and peptide nanofibers. The book reviews the synthesis and strategies necessary to create protein and peptide nanofibers, such as self-assembly (including supramolecular assembly), electrospinning, template synthesis, and enzymatic synthesis. Then, the key chemical modification and molecular design methods are highlighted that can be utilized to improve the bio-functions of these synthetic fibers. Finally, fabrication methods for key applications, such as sensing, drug delivery, imaging, tissue engineering and electronic devices are reviewed. This book will be an ideal resource for those working in materials science, polymer science, chemical engineering, nanotechnology and biomedicine. Reviews key chemical modification and molecular design methods to improve the bio-functions of synthetic peptide and protein nanofibers Discusses the most important synthesis strategies, including supramolecular assembly, electrospinning, template synthesis and enzymatic synthesis Provides information on fabrication of nanofibers for key applications such as sensing, imaging, drug delivery and tissue engineering

Soft Machines

Soft Machines PDF Author: Richard A. L. Jones
Publisher: OUP Oxford
ISBN: 0191567248
Category : Science
Languages : en
Pages : 240

Get Book

Book Description
Enthusiasts look forward to a time when tiny machines reassemble matter and process information with unparalleled power and precision. But is their vision realistic? Where is the science heading? As nanotechnology (a new technology that many believe will transform society in the next one hundred years) rises higher in the news agenda and popular consciousness, there is a real need for a book which discusses clearly the science on which this technology will be based. Whilst it is most easy to simply imagine these tiny machines as scaled-down versions of the macroscopic machines we are all familiar with, the way things behave on small scales is quite different to the way they behave on large scales. Engineering on the nanoscale will use very different principles to those we are used to in our everyday lives, and the materials used in nanotehnology will be soft and mutable, rather than hard and unyielding. "Soft Machines" explains in a lively and very accessible manner why the nanoworld is so different to the macro-world which we are all familiar with. Why does nature engineer things in the way it does, and how can we learn to use these unfamiliar principles to create valuable new materials and artefacts which will have a profound effect on medicine, electronics, energy and the environment in the twenty-first century. With a firmer understanding of the likely relationship between nanotechnology and nature itself, we can gain a much clearer notion of what dangers this powerful technology may potentially pose, as well as come to realise that nanotechnology will have more in common with biology than with conventional engineering.

Self-assembling Biomaterials

Self-assembling Biomaterials PDF Author: Helena S. Azevedo
Publisher: Woodhead Publishing
ISBN: 0081020120
Category : Technology & Engineering
Languages : en
Pages : 612

Get Book

Book Description
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. Explores both theoretical and practical aspects of self-assembly in biomaterials Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials Examines the use of dynamic self-assembling biomaterials

Molecular Biology of The Cell

Molecular Biology of The Cell PDF Author: Bruce Alberts
Publisher:
ISBN: 9780815332183
Category : Cytology
Languages : en
Pages : 0

Get Book

Book Description


Colloids and the Depletion Interaction

Colloids and the Depletion Interaction PDF Author: Henk N. W. Lekkerkerker
Publisher: Springer Nature
ISBN: 3031521315
Category :
Languages : en
Pages : 400

Get Book

Book Description


Biomolecular Self-Assembling Materials

Biomolecular Self-Assembling Materials PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309056284
Category : Technology & Engineering
Languages : en
Pages : 43

Get Book

Book Description


A Matter of Size

A Matter of Size PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309180279
Category : Technology & Engineering
Languages : en
Pages : 200

Get Book

Book Description
The National Nanotechnology Initiative (NNI) was created in 2000 to focus and coordinate the nanoscience and nanotechnology research and development (R&D) activities being funded by several federal agencies. The purpose of the NNI is to marshal these research activities in order to accelerate responsible development and deployment of nanotechnology for economic benefit and national security. To take stock of the progress of the NNI, Congress, in P. L. 108-153, the 21st Century Nanotechnology Research and Development Act, directed the National Research Council to carry out a review of the program every three years. This report presents the results of the first of those reviews, which addresses the economic impact of nanotechnology developments and provides a benchmark of U.S. R&D efforts relative to those undertaken by foreign competitors. In addition, the report offers an assessment of the current status of responsible development of nanotechnology and comments on the feasibility of molecular self-assembly.