Author: Charis Ghélis
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 592
Book Description
Protein Folding aims to collect the most important information in the field of protein folding and probes the main principles that govern formation of the three-dimensional structure of a protein from a nascent polypeptide chain, as well as how the functional properties appear. This text is organized into three sections and consists of 15 chapters. After an introductory chapter where the main problems of protein folding are considered at the cellular level in the context of protein biosynthesis, the discussion turns to the conformation of native globular proteins. Definitions and rules of nome ...
Protein Folding
Author: Charis Ghélis
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 592
Book Description
Protein Folding aims to collect the most important information in the field of protein folding and probes the main principles that govern formation of the three-dimensional structure of a protein from a nascent polypeptide chain, as well as how the functional properties appear. This text is organized into three sections and consists of 15 chapters. After an introductory chapter where the main problems of protein folding are considered at the cellular level in the context of protein biosynthesis, the discussion turns to the conformation of native globular proteins. Definitions and rules of nome ...
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 592
Book Description
Protein Folding aims to collect the most important information in the field of protein folding and probes the main principles that govern formation of the three-dimensional structure of a protein from a nascent polypeptide chain, as well as how the functional properties appear. This text is organized into three sections and consists of 15 chapters. After an introductory chapter where the main problems of protein folding are considered at the cellular level in the context of protein biosynthesis, the discussion turns to the conformation of native globular proteins. Definitions and rules of nome ...
Protein Structure, Stability, and Folding
Author: Kenneth P. Murphy
Publisher: Springer Science & Business Media
ISBN: 1592591930
Category : Science
Languages : en
Pages : 258
Book Description
In Protein Structure, Stability, and Folding, Kenneth P. Murphy and a panel of internationally recognized investigators describe some of the newest experimental and theoretical methods for investigating these critical events and processes. Among the techniques discussed are the many methods for calculating many of protein stability and dynamics from knowledge of the structure, and for performing molecular dynamics simulations of protein unfolding. New experimental approaches presented include the use of co-solvents, novel applications of hydrogen exchange techniques, temperature-jump methods for looking at folding events, and new strategies for mutagenesis experiments. Unique in its powerful combination of theory and practice, Protein Structure, Stability, and Folding offers protein and biophysical chemists the means to gain a more comprehensive understanding of some of this complex area by detailing many of the major techniques in use today.
Publisher: Springer Science & Business Media
ISBN: 1592591930
Category : Science
Languages : en
Pages : 258
Book Description
In Protein Structure, Stability, and Folding, Kenneth P. Murphy and a panel of internationally recognized investigators describe some of the newest experimental and theoretical methods for investigating these critical events and processes. Among the techniques discussed are the many methods for calculating many of protein stability and dynamics from knowledge of the structure, and for performing molecular dynamics simulations of protein unfolding. New experimental approaches presented include the use of co-solvents, novel applications of hydrogen exchange techniques, temperature-jump methods for looking at folding events, and new strategies for mutagenesis experiments. Unique in its powerful combination of theory and practice, Protein Structure, Stability, and Folding offers protein and biophysical chemists the means to gain a more comprehensive understanding of some of this complex area by detailing many of the major techniques in use today.
Protein Stability and Folding
Author: Wolfgang Pfeil
Publisher: Springer Science & Business Media
ISBN: 3642587607
Category : Science
Languages : en
Pages : 662
Book Description
Protein folding remains one of the most exclusive problems of modern biochemistry. Structure analysis has given access to the wealth of the molecular architecture of pro teins. As architecture needs static calculations, protein structure is always related to thermodynamic factors that govern folding and stability of a particular folded protein over the non-organized polypeptide chain. During the past decades a huge amount of thermodynamic data related to protein folding and stability has been accumulated. The data are certainly of importance in dechiffring the protein folding problem. At the same time, the data can guide the con struction of modified and newly synthesized proteins with properties optimized for particular application. The intention of this book is a generation of a data collection which makes the vast amount of present data accessible for multidisciplinary research where chemistry, phy sics, biology, and medicine are involved and also pharmaceutical and food research and technology. It took several years to compile all the data and the author wishes to thank everyone who provided data, ideas or even unpublished results. The author is, in particular, indebted to Prof. Wadso (Lund, Sweden) and IUPAC's Steering Committee on Bio physical Chemistry. Furthermore, support by the Deutsche Forschungsgemeinschafi (INK 16 AI-I) is acknowledged.
Publisher: Springer Science & Business Media
ISBN: 3642587607
Category : Science
Languages : en
Pages : 662
Book Description
Protein folding remains one of the most exclusive problems of modern biochemistry. Structure analysis has given access to the wealth of the molecular architecture of pro teins. As architecture needs static calculations, protein structure is always related to thermodynamic factors that govern folding and stability of a particular folded protein over the non-organized polypeptide chain. During the past decades a huge amount of thermodynamic data related to protein folding and stability has been accumulated. The data are certainly of importance in dechiffring the protein folding problem. At the same time, the data can guide the con struction of modified and newly synthesized proteins with properties optimized for particular application. The intention of this book is a generation of a data collection which makes the vast amount of present data accessible for multidisciplinary research where chemistry, phy sics, biology, and medicine are involved and also pharmaceutical and food research and technology. It took several years to compile all the data and the author wishes to thank everyone who provided data, ideas or even unpublished results. The author is, in particular, indebted to Prof. Wadso (Lund, Sweden) and IUPAC's Steering Committee on Bio physical Chemistry. Furthermore, support by the Deutsche Forschungsgemeinschafi (INK 16 AI-I) is acknowledged.
Protein Folding in Silico
Author: Irena Roterman-Konieczna
Publisher: Elsevier
ISBN: 1908818255
Category : Science
Languages : en
Pages : 241
Book Description
Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the "fuzzy oil drop" model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks. - Discusses a range of ab initio models for protein structure prediction - Introduces a unique model based on experimental observations - Describes various methods for the quantitative assessment of the presented models from the viewpoint of information theory
Publisher: Elsevier
ISBN: 1908818255
Category : Science
Languages : en
Pages : 241
Book Description
Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the "fuzzy oil drop" model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks. - Discusses a range of ab initio models for protein structure prediction - Introduces a unique model based on experimental observations - Describes various methods for the quantitative assessment of the presented models from the viewpoint of information theory
Protein Folding
Author: Cláudio M. Gomes
Publisher: Springer
ISBN: 331900882X
Category : Science
Languages : en
Pages : 74
Book Description
This snapshot volume is designed to provide a smooth entry into the field of protein folding. Presented in a concise manner, each section introduces key concepts while providing a brief overview of the relevant literature. Outlook subsections will pinpoint specific aspects related to emerging methodologies, concepts and trends.
Publisher: Springer
ISBN: 331900882X
Category : Science
Languages : en
Pages : 74
Book Description
This snapshot volume is designed to provide a smooth entry into the field of protein folding. Presented in a concise manner, each section introduces key concepts while providing a brief overview of the relevant literature. Outlook subsections will pinpoint specific aspects related to emerging methodologies, concepts and trends.
The Protein Folding Problem and Tertiary Structure Prediction
Author: Kenneth M.Jr. Merz
Publisher: Springer Science & Business Media
ISBN: 1468468316
Category : Science
Languages : en
Pages : 585
Book Description
A solution to the protein folding problem has eluded researchers for more than 30 years. The stakes are high. Such a solution will make 40,000 more tertiary structures available for immediate study by translating the DNA sequence information in the sequence databases into three-dimensional protein structures. This translation will be indispensable for the analy sis of results from the Human Genome Project, de novo protein design, and many other areas of biotechnological research. Finally, an in-depth study of the rules of protein folding should provide vital clues to the protein fold ing process. The search for these rules is therefore an important objective for theoretical molecular biology. Both experimental and theoretical ap proaches have been used in the search for a solution, with many promising results but no general solution. In recent years, there has been an exponen tial increase in the power of computers. This has triggered an incredible outburst of theoretical approaches to solving the protein folding problem ranging from molecular dynamics-based studies of proteins in solution to the actual prediction of protein structures from first principles. This volume attempts to present a concise overview of these advances. Adrian Roitberg and Ron Elber describe the locally enhanced sam pling/simulated annealing conformational search algorithm (Chapter 1), which is potentially useful for the rapid conformational search of larger molecular systems.
Publisher: Springer Science & Business Media
ISBN: 1468468316
Category : Science
Languages : en
Pages : 585
Book Description
A solution to the protein folding problem has eluded researchers for more than 30 years. The stakes are high. Such a solution will make 40,000 more tertiary structures available for immediate study by translating the DNA sequence information in the sequence databases into three-dimensional protein structures. This translation will be indispensable for the analy sis of results from the Human Genome Project, de novo protein design, and many other areas of biotechnological research. Finally, an in-depth study of the rules of protein folding should provide vital clues to the protein fold ing process. The search for these rules is therefore an important objective for theoretical molecular biology. Both experimental and theoretical ap proaches have been used in the search for a solution, with many promising results but no general solution. In recent years, there has been an exponen tial increase in the power of computers. This has triggered an incredible outburst of theoretical approaches to solving the protein folding problem ranging from molecular dynamics-based studies of proteins in solution to the actual prediction of protein structures from first principles. This volume attempts to present a concise overview of these advances. Adrian Roitberg and Ron Elber describe the locally enhanced sam pling/simulated annealing conformational search algorithm (Chapter 1), which is potentially useful for the rapid conformational search of larger molecular systems.
Oxidative Folding of Peptides and Proteins
Author: Luis Moroder
Publisher: Royal Society of Chemistry
ISBN: 0854041486
Category : Science
Languages : en
Pages : 453
Book Description
With contributions from experts in the field, this book provides a comprehensive overview of the oxidative folding of cysteine-rich peptides.
Publisher: Royal Society of Chemistry
ISBN: 0854041486
Category : Science
Languages : en
Pages : 453
Book Description
With contributions from experts in the field, this book provides a comprehensive overview of the oxidative folding of cysteine-rich peptides.
Mechanisms of Protein Folding
Author: Roger H. Pain
Publisher: Oxford University Press, USA
ISBN: 9780199637881
Category : Science
Languages : en
Pages : 433
Book Description
Since the publication of the first edition of mechanisms of protein folding in 1994, significant advances in both the technical and conceptual understanding of protein folding. This new edition has been brought up to date in content, context, and authorship and will make the subject accessibleto a wide range of scientists. The emphasis on experimental approaches has benn maintained from the first edition but this time within the explicit context of simulations and energy surfaces. There is an introductory chapter explaining the 'new' model of protein folding, which takes into account theheterogeneity of the starting state. Advances in interpreting observed kinetic data and the development of technology to observe fast folding reactions and characterize intermediate structures have accompanied this new view and are covered in detail. The term 'molten globule'is often usedincorrectly but here the significance of the term is carefully described at different satges of folding. The concept of the transition state, including the complementary approaches of molecular dynamics and protein engineering, is also discussed in detail. In vitro studies provide the molecularbasis for the thermodynamic and kinetic energy minimization of the in vivo processes of protein folding and two of the potentially rate determining reactions are disulphide bond formation and proline isomerization. It has also become increasingly apparent that chaperone proteins play a vital role inprotein folding and other reactions of proteins involoving major conformational change and the molecular details of these processes are discussed in detail in chapter 14. The final chapter describes the centreal importance of protein folding and unfolding reactions in disease and gives claerdefinition of the term 'misfolding'. Studying protein folding in vivo is full of problems and to show how these problems can be overcome in practice, three case studies of three very different types of protein have been included: the small globular protein apomyoglobin; the fibrous protein collagen;and the membrane protein haemagglutinin.
Publisher: Oxford University Press, USA
ISBN: 9780199637881
Category : Science
Languages : en
Pages : 433
Book Description
Since the publication of the first edition of mechanisms of protein folding in 1994, significant advances in both the technical and conceptual understanding of protein folding. This new edition has been brought up to date in content, context, and authorship and will make the subject accessibleto a wide range of scientists. The emphasis on experimental approaches has benn maintained from the first edition but this time within the explicit context of simulations and energy surfaces. There is an introductory chapter explaining the 'new' model of protein folding, which takes into account theheterogeneity of the starting state. Advances in interpreting observed kinetic data and the development of technology to observe fast folding reactions and characterize intermediate structures have accompanied this new view and are covered in detail. The term 'molten globule'is often usedincorrectly but here the significance of the term is carefully described at different satges of folding. The concept of the transition state, including the complementary approaches of molecular dynamics and protein engineering, is also discussed in detail. In vitro studies provide the molecularbasis for the thermodynamic and kinetic energy minimization of the in vivo processes of protein folding and two of the potentially rate determining reactions are disulphide bond formation and proline isomerization. It has also become increasingly apparent that chaperone proteins play a vital role inprotein folding and other reactions of proteins involoving major conformational change and the molecular details of these processes are discussed in detail in chapter 14. The final chapter describes the centreal importance of protein folding and unfolding reactions in disease and gives claerdefinition of the term 'misfolding'. Studying protein folding in vivo is full of problems and to show how these problems can be overcome in practice, three case studies of three very different types of protein have been included: the small globular protein apomyoglobin; the fibrous protein collagen;and the membrane protein haemagglutinin.
Protein Folding
Author: C. M. Dobson
Publisher: Cambridge University Press
ISBN: 9780521576369
Category : Medical
Languages : en
Pages : 128
Book Description
Discusses the molecular mechanisms controlling protein folding in vivo and in vitro.
Publisher: Cambridge University Press
ISBN: 9780521576369
Category : Medical
Languages : en
Pages : 128
Book Description
Discusses the molecular mechanisms controlling protein folding in vivo and in vitro.
Protein Folding Kinetics
Author: Bengt Nölting
Publisher: Springer Science & Business Media
ISBN: 354027278X
Category : Science
Languages : en
Pages : 222
Book Description
First methods book which includes many detailed descriptions Absolutely needed and thus timely for the scientific community Comprises 15% more content and includes the mentioned special features
Publisher: Springer Science & Business Media
ISBN: 354027278X
Category : Science
Languages : en
Pages : 222
Book Description
First methods book which includes many detailed descriptions Absolutely needed and thus timely for the scientific community Comprises 15% more content and includes the mentioned special features