Electron Transfer Proteins

Electron Transfer Proteins PDF Author: Toshiko Ichiye
Publisher: CRC Press
ISBN: 9781420082296
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
A molecular understanding of electron transfer is crucial to understanding the molecular basis of metabolic processes in which electron transfer is essential, diseases involving these processes, and drug design targeting these processes. This book provides a cohesive and comprehensive discussion of computational methods used for electron transfer proteins and what has been learned from such studies for the first time in a book. It also gives an overview of results from theory, computation, and experiment about electron transfer proteins. This resource also includes strategies for studying metal sites that have not been examined computationally.

Electron Transfer Proteins

Electron Transfer Proteins PDF Author: Toshiko Ichiye
Publisher: CRC Press
ISBN: 9781420082296
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
A molecular understanding of electron transfer is crucial to understanding the molecular basis of metabolic processes in which electron transfer is essential, diseases involving these processes, and drug design targeting these processes. This book provides a cohesive and comprehensive discussion of computational methods used for electron transfer proteins and what has been learned from such studies for the first time in a book. It also gives an overview of results from theory, computation, and experiment about electron transfer proteins. This resource also includes strategies for studying metal sites that have not been examined computationally.

Encyclopedia of Biophysics

Encyclopedia of Biophysics PDF Author: Gordon Roberts
Publisher: Springer
ISBN: 9783642167119
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
The Encyclopedia of Biophysics is envisioned both as an easily accessible source of information and as an introductory guide to the scientific literature. It includes entries describing both Techniques and Systems. In the Techniques entries, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with the value and the limitations of the information each provides. Techniques covered range from diffraction (X-ray, electron and neutron) through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR) to imaging (from electron microscopy to live cell imaging and MRI), as well as computational and simulation approaches. In the Systems entries, biophysical approaches to specific biological systems or problems – from protein and nucleic acid structure to membranes, ion channels and receptors – are described. These sections, which place emphasis on the integration of the different techniques, therefore provide an inroad into Biophysics from a biological more than from a technique-oriented physical/chemical perspective. Thus the Encyclopedia is intended to provide a resource both for biophysicists interested in methods beyond those used in their immediate sub-discipline and for those readers who are approaching biophysics from either a physical or biological background.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description


Enzymatic Bioelectrocatalysis

Enzymatic Bioelectrocatalysis PDF Author: Kenji Kano
Publisher: Springer Nature
ISBN: 9811589607
Category : Science
Languages : en
Pages : 145

Get Book Here

Book Description
This book covers the fundamental aspects of the electrochemistry and redox enzymes that underlie enzymatic bioelectrocatalysis, in which a redox enzyme reaction is coupled with an electrode reaction. Described here are the basic concept and theoretical aspects of bioelectrocatalysis and the various experimental techniques and materials used to study and characterize related problems. Also included are the various applications of bioelectrocatalysis to bioelectrochemical devices including biosensors, biofuel cells, and bioreactors. This book is a unique source of information in the area of enzymatic bioelectrocatalysis, approaching the subject from a cross-disciplinary point of view.

Nanooptics, Nanophotonics, Nanostructures, and Their Applications

Nanooptics, Nanophotonics, Nanostructures, and Their Applications PDF Author: Olena Fesenko
Publisher: Springer
ISBN: 3319910833
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 5th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2017) held in Chernivtsi, Ukraine on August 23-26, 2017. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics and nanoplasmonics to interface studies. This book's companion volume also addresses topics such as energy storage and biomedical applications.

Photosynthesis And Bioenergetics

Photosynthesis And Bioenergetics PDF Author: James Barber
Publisher: World Scientific
ISBN: 9813230312
Category : Science
Languages : en
Pages : 367

Get Book Here

Book Description
This book is a tribute to three outstanding scientists, Professors Jan Anderson FRS, Leslie Dutton FRS and John Walker FRS, Nobel Laureate. Covering some of the most recent advances in the fields of Bioenergetics and Photosynthesis, this book is a compilation of contributions from leading scientists actively involved in understanding the natural biological processes associated with the flow of energy in biological cells. The lectures found in this significant volume were presented at a meeting in March 2016 in Singapore to commemorate the outstanding research in this area.The contents begin with the ideas, specially the contribution from Nobel Laureate Rudolph Marcus, who is well-known for creating the theory of electron transport reactions. This is followed by contributions of many others on various aspects of respiratory and photosynthetic transport chains as well as the dynamic regulation of light harvesting and electron transport events in oxygenic photosynthesis. The book is highly recommended to postgraduate students and researchers who are interested in various aspects of bioenergetic cycles.

Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems PDF Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Advanced Fragmentation Methods in Biomolecular Mass Spectrometry

Advanced Fragmentation Methods in Biomolecular Mass Spectrometry PDF Author: Frederik Lermyte
Publisher: Royal Society of Chemistry
ISBN: 1839161108
Category : Science
Languages : en
Pages : 359

Get Book Here

Book Description
Breaking down large biomolecules into fragments in a controlled manner is key to modern biomolecular mass spectrometry. This book is a high-level introduction, as well as a reference work for experienced users, to ECD, ETD, EDD, NETD, UVPD, SID, and other advanced fragmentation methods. It provides a comprehensive overview of their history, mechanisms, instrumentation, and key applications. With contributions from leading experts, this book will act as an authoritative guide to these methods. Aimed at postgraduate and professional researchers, mainly in academia, but also in industry, it can be used as supplementary reading for advanced students on mass spectrometry or analytical (bio)chemistry courses.

Chemoselective and Bioorthogonal Ligation Reactions

Chemoselective and Bioorthogonal Ligation Reactions PDF Author: W. Russ Algar
Publisher: John Wiley & Sons
ISBN: 352768347X
Category : Technology & Engineering
Languages : en
Pages : 923

Get Book Here

Book Description
This timely, one-stop reference is the first on an emerging and interdisciplinary topic. Covering both established and recently developed ligation chemistries, the book is divided into two didactic parts: a section that focuses on the details of bioorthogonal and chemoselective ligation reactions at the level of fundamental organic chemistry, and a section that focuses on applications, particularly in the areas of chemical biology, biomaterials, and bioanalysis, highlighting the capabilities and benefits of the ligation reactions. With chapters authored by outstanding scientists who range from trailblazers in the field to young and emerging leaders, this book on a highly interdisciplinary topic will be of great interest for biochemists, biologists, materials scientists, pharmaceutical chemists, organic chemists, and many others.

Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling PDF Author: William A. Cramer
Publisher: Springer
ISBN: 9401774811
Category : Science
Languages : en
Pages : 763

Get Book Here

Book Description
An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era. The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function.