Protein Dynamics from Nuclear Spin Relaxation

Protein Dynamics from Nuclear Spin Relaxation PDF Author: Cyril Charlier
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The intimate relation between the structure, dynamics and function of biomolecules is widely recognized. NMR is a unique technique to extract information on both structure and dynamics at atomic resolutions. Measurements of nitrogen-15 nuclear spin relaxation allow a quantitative description of motions on pico-nanosecond timescales through the characterization of the spectral density function (SDF), which describes the motions of amide bonds in proteins. The SDF has to be sampled at low magnetic fields, inappropriate for protein NMR, in order to obtain a better description of motions. Such measurements are possible by the use of high-resolution relaxometry. Such measurements on Ubiquitin highlight the sub- and low-nanosecond motions in flexible regions. The classical models for the interpretation of relaxation data in proteins are not well suited for intrinsically disordered proteins (IDPs) and require the development of new approaches. We developed a new approach, called IMPACT, based on a mathematical reconstruction of the distribution of correlation times from the experimental SDF. We have applied IMPACT to the transcription factor Engrailed 2. Our method allowed an unprecedented description of the distribution of pico- to nanosecond motions in IDPs. The IMPACT approach will be combined with high-resolution relaxometry measurements on the C-terminal region of the protein Artemis to provide information on an IDP. In addition, we have described the kinetics and thermodynamics of the interaction of Artemis with the DNA Binding Domain of Ligase IV.Overall, this work contributes to the development of new concepts for the interpretation of extensive nuclear spin relaxation data in proteins.

Protein Dynamics from Nuclear Spin Relaxation

Protein Dynamics from Nuclear Spin Relaxation PDF Author: Cyril Charlier
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The intimate relation between the structure, dynamics and function of biomolecules is widely recognized. NMR is a unique technique to extract information on both structure and dynamics at atomic resolutions. Measurements of nitrogen-15 nuclear spin relaxation allow a quantitative description of motions on pico-nanosecond timescales through the characterization of the spectral density function (SDF), which describes the motions of amide bonds in proteins. The SDF has to be sampled at low magnetic fields, inappropriate for protein NMR, in order to obtain a better description of motions. Such measurements are possible by the use of high-resolution relaxometry. Such measurements on Ubiquitin highlight the sub- and low-nanosecond motions in flexible regions. The classical models for the interpretation of relaxation data in proteins are not well suited for intrinsically disordered proteins (IDPs) and require the development of new approaches. We developed a new approach, called IMPACT, based on a mathematical reconstruction of the distribution of correlation times from the experimental SDF. We have applied IMPACT to the transcription factor Engrailed 2. Our method allowed an unprecedented description of the distribution of pico- to nanosecond motions in IDPs. The IMPACT approach will be combined with high-resolution relaxometry measurements on the C-terminal region of the protein Artemis to provide information on an IDP. In addition, we have described the kinetics and thermodynamics of the interaction of Artemis with the DNA Binding Domain of Ligase IV.Overall, this work contributes to the development of new concepts for the interpretation of extensive nuclear spin relaxation data in proteins.

Protein Dynamics Studied by NMR Spin Relaxation

Protein Dynamics Studied by NMR Spin Relaxation PDF Author: Peter Carr
Publisher:
ISBN:
Category :
Languages : en
Pages : 432

Get Book Here

Book Description


Nuclear Spin Relaxation in Liquids

Nuclear Spin Relaxation in Liquids PDF Author: Jozef Kowalewski
Publisher: CRC Press
ISBN: 1351264583
Category : Science
Languages : en
Pages : 428

Get Book Here

Book Description
Nuclear magnetic resonance (NMR) is widely used across many fields of science because of the rich data it produces, and some of the most valuable data come from studies of nuclear spin relaxation in solution. The first edition of this book, published more than a decade ago, provided an accessible and cohesive treatment of the field. The present second edition is a significant update, covering important new developments in recent years. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure and special topics such as relaxation in systems with quadrupolar nuclei, in paramagnetic systems and in long-living spin states. Avoiding overly demanding mathematics, the authors explain spin relaxation in a manner that anyone with a familiarity with NMR can follow. The focus is on illustrating and explaining the physical nature of relaxation phenomena. Nuclear Spin Relaxation in Liquids: Theory, Experiments and Applications, 2nd edition, provides useful supplementary reading for graduate students and is a valuable reference for NMR spectroscopists, whether in chemistry, physics or biochemistry.

Nuclear Spin Relaxation in Liquids

Nuclear Spin Relaxation in Liquids PDF Author: Jozef Kowalewski
Publisher: CRC Press
ISBN: 1420012193
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems. Avoiding overly demanding mathematics, the authors explain relaxation in a manner that anyone with a basic familiarity with NMR can follow, regardless of their specialty. The focus is on illustrating and explaining the physical nature of the phenomena, rather than the intricate details. Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications forms useful supplementary reading for graduate students and a valuable desk reference for NMR spectroscopists, whether in chemistry, physics, chemical physics, or biochemistry.

Protein NMR Techniques

Protein NMR Techniques PDF Author: Alexander Shekhtman
Publisher: Humana Press
ISBN: 9781493961955
Category :
Languages : en
Pages : 534

Get Book Here

Book Description
In its expanded third edition, this Methods in Molecular Biology volume offers techniques for NMR sample preparation, solution and solid state NMR methodologies and data processing, materials lists, step-by-step protocols, troubleshooting tips and more."

Protein Dynamics Studied by NMR Spin Relaxation

Protein Dynamics Studied by NMR Spin Relaxation PDF Author: Patrik Lundström
Publisher:
ISBN:
Category :
Languages : en
Pages : 49

Get Book Here

Book Description


Studies of Protein Dynamics Using Heteronuclear Two-dimensional Nuclear Magnetic Resonance Spectroscopy

Studies of Protein Dynamics Using Heteronuclear Two-dimensional Nuclear Magnetic Resonance Spectroscopy PDF Author: Jeffrey W. Peng
Publisher:
ISBN:
Category :
Languages : en
Pages : 562

Get Book Here

Book Description


Nuclear Spin Relaxation in Liquids

Nuclear Spin Relaxation in Liquids PDF Author: Jozef Kowalewski
Publisher: CRC Press
ISBN: 1351264591
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Nuclear magnetic resonance (NMR) is widely used across many fields of science because of the rich data it produces, and some of the most valuable data come from studies of nuclear spin relaxation in solution. The first edition of this book, published more than a decade ago, provided an accessible and cohesive treatment of the field. The present second edition is a significant update, covering important new developments in recent years. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure and special topics such as relaxation in systems with quadrupolar nuclei, in paramagnetic systems and in long-living spin states. Avoiding overly demanding mathematics, the authors explain spin relaxation in a manner that anyone with a familiarity with NMR can follow. The focus is on illustrating and explaining the physical nature of relaxation phenomena. Nuclear Spin Relaxation in Liquids: Theory, Experiments and Applications, 2nd edition, provides useful supplementary reading for graduate students and is a valuable reference for NMR spectroscopists, whether in chemistry, physics or biochemistry.

Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain

Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain PDF Author: Alexandra Ahlner
Publisher: Linköping University Electronic Press
ISBN: 9175191032
Category : Nuclear magnetic resonance spectroscopy
Languages : en
Pages : 79

Get Book Here

Book Description
Proteins are essential for all known forms of life and in many lethal diseases protein failure is the cause of the disease. To understand proteins and the processes they are involved in, it is valuable to know their structures as well as their dynamics and interactions. The structures may not be directly inspected because proteins are too small to be visible in a light microscope, which is why indirect methods such as nuclear magnetic resonance (NMR) spectroscopy have to be utilized. This method provides atomic information about the protein and, in contrast to other methods with similar resolution, the measurements are performed in solution resulting in more physiological conditions, enabling analysis of dynamics. Important dynamical processes are the ones on the millisecond timeframe, which may contribute to interactions of proteins and their catalysis of chemical reactions, both of significant value for the function of the proteins. To better understand proteins, not only do we need to study them, but also develop the methods we are using. This thesis presents four papers about improved NMR techniques as well as a fifth where the kinase domain of ephrinB receptor 2 (EphB2) has been studied regarding the importance of millisecond dynamics and interactions for the activation process. The first paper presents the software COMPASS, which combines statistics and the calculation power of a computer with the flexibility and experience of the user to facilitate and speed up the process of assigning NMR signals to the atoms in the protein. The computer program PINT has been developed for easier and faster evaluation of NMR experiments, such as those that evaluate protein dynamics. It is especially helpful for NMR signals that are difficult to distinguish, so called overlapped peaks, and the soft- ware also converts the detected signals to the indirectly measured physical quantities, such as relaxation rate constants, principal for dynamics. Next are two new versions of the Carr-Purcell-Maiboom-Gill (CPMG) dispersion pulse sequences, designed to measure millisecond dynamics in a way so that the signals are more separated than in standard experiments, to reduce problems with overlaps. To speed up the collection time of the data set, a subset is collected and the entire data set is then reconstructed, by multi-dimensional decomposition co-processing. Described in the thesis is also a way to produce suitably labeled proteins, to detect millisecond dynamics at C? positions in proteins, using the CPMG dispersion relaxation experiment at lower protein concentrations. Lastly, the kinase domain of EphB2 is shown to be more dynamic on the millisecond time scale as well as more prone to interact with itself in the active form than in the inactive one. This is important for the receptor function of the protein, when and how it mediates signals. To conclude, this work has extended the possibilities to study protein dynamics by NMR spectroscopy and contributed to increased understanding of the activation process of EphB2 and its signaling mechanism.

Biological NMR Spectroscopy

Biological NMR Spectroscopy PDF Author: John L. Markley
Publisher: Oxford University Press
ISBN: 0195357426
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.